Bioprinting is a technology that allows making complex tissues from the bottom-up. The need to control accurately both the resolution of the printed droplet and the precision of its positioning was reported. Using a bioink with 1 × 108 cells/mL, we present evidence that the laser-assisted bioprinter (LAB) can deposit droplets of functional mesenchymal stem cells with a resolution of 138 ± 28 μm and a precision of 16 ± 13 μm. We demonstrate that this high printing definition is maintained in three dimensions.

References

References
1.
Murphy
,
S. V.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotechnol.
,
32
(
8
), pp.
773
785
.
2.
Guillemot
,
F.
,
Mironov
,
V.
, and
Nakamura
,
M.
,
2010
, “
Bioprinting Is Coming of Age: Report From the International Conference on Bioprinting and Biofabrication in Bordeaux (3B’09)
,”
Biofabrication
,
2
(
1
), p.
010201
.
3.
Lee
,
W.
,
Debasitis
,
J. C.
,
Lee
,
V. K.
,
Lee
,
J.-H.
,
Fischer
,
K.
,
Edminster
,
K.
,
Park
,
J.-K.
, and
Yoo
,
S.-S.
,
2009
, “
Multi-Layered Culture of Human Skin Fibroblasts and Keratinocytes Through Three-Dimensional Freeform Fabrication
,”
Biomaterials
,
30
(
8
), pp.
1587
1595
.
4.
Michael
,
S.
,
Sorg
,
H.
,
Peck
,
C.-T.
,
Koch
,
L.
,
Deiwick
,
A.
,
Chichkov
,
B.
,
Vogt
,
P. M.
, and
Reimers
,
K.
,
2013
, “
Tissue Engineered Skin Substitutes Created by Laser-Assisted Bioprinting Form Skin-Like Structures in the Dorsal Skin Fold Chamber in Mice
,”
PLoS One
,
8
(
3
), p.
e57741
.
5.
Koch
,
L.
,
Kuhn
,
S.
,
Sorg
,
H.
,
Gruene
,
M.
,
Schlie
,
S.
,
Gaebel
,
R.
,
Polchow
,
B.
,
Reimers
,
K.
,
Stoelting
,
S.
,
Ma
,
N.
,
Vogt
,
P. M.
,
Steinhoff
,
G.
, and
Chichkov
,
B.
,
2010
, “
Laser Printing of Skin Cells and Human Stem Cells
,”
Tissue Eng., Part C
,
16
(
5
), pp.
847
854
.
6.
Gurkan
,
U. A.
,
El Assal
,
R.
,
Yildiz
,
S. E.
,
Sung
,
Y.
,
Trachtenberg
,
A. J.
,
Kuo
,
W. P.
, and
Demirci
,
U.
,
2014
, “
Engineering Anisotropic Biomimetic Fibrocartilage Microenvironment by Bioprinting Mesenchymal Stem Cells in Nanoliter Gel Droplets
,”
Mol. Pharm.
,
11
(
7
), pp.
2151
2159
.
7.
Cui
,
X.
,
Breitenkamp
,
K.
,
Finn
,
M. G.
,
Lotz
,
M.
, and
D'Lima
,
D. D.
,
2012
, “
Direct Human Cartilage Repair Using Three-Dimensional Bioprinting Technology
,”
Tissue Eng., Part A
,
18
(
11–12
), pp.
1304
1312
.
8.
Catros
,
S.
,
Fricain
,
J.-C.
,
Guillotin
,
B.
,
Pippenger
,
B.
,
Bareille
,
R.
,
Remy
,
M.
,
Lebraud
,
E.
,
Desbat
,
B.
,
Amédée
,
J.
, and
Guillemot
,
F.
,
2011
, “
Laser-Assisted Bioprinting for Creating On-Demand Patterns of Human Osteoprogenitor Cells and Nano-Hydroxyapatite
,”
Biofabrication
,
3
(
2
), p.
025001
.
9.
Jakab
,
K.
,
Norotte
,
C.
,
Damon
,
B.
,
Marga
,
F.
,
Neagu
,
A.
,
Besch-Williford
,
C. L.
,
Kachurin
,
A.
,
Church
,
K. H.
,
Park
,
H.
,
Mironov
,
V.
,
Markwald
,
R.
,
Vunjak-Novakovic
,
G.
, and
Forgacs
,
G.
,
2008
, “
Tissue Engineering by Self-Assembly of Cells Printed Into Topologically Defined Structures
,”
Tissue Eng., Part A
,
14
(
3
), pp.
413
421
.
10.
Cui
,
X.
, and
Boland
,
T.
,
2009
, “
Human Microvasculature Fabrication Using Thermal Inkjet Printing Technology
,”
Biomaterials
,
30
(
31
), pp.
6221
6227
.
11.
Wu
,
P. K.
, and
Ringeisen
,
B. R.
,
2010
, “
Development of Human Umbilical Vein Endothelial Cell (HUVEC) and Human Umbilical Vein Smooth Muscle Cell (HUVSMC) Branch/Stem Structures on Hydrogel Layers Via Biological Laser Printing (BioLP)
,”
Biofabrication
,
2
(
1
), p.
014111
.
12.
Ouyang
,
L.
,
Yao
,
R.
,
Chen
,
X.
,
Na
,
J.
, and
Sun
,
W.
,
2015
, “
3D Printing of HEK 293FT Cell-Laden Hydrogel Into Macroporous Constructs With High Cell Viability and Normal Biological Functions
,”
Biofabrication
,
7
(
1
), p.
015010
.
13.
Guillotin
,
B.
, and
Guillemot
,
F.
,
2011
, “
Cell Patterning Technologies for Organotypic Tissue Fabrication
,”
Trends Biotechnol.
,
29
(
4
), pp.
183
190
.
14.
Xu
,
C.
,
Zhang
,
M.
,
Huang
,
Y.
,
Ogale
,
A.
,
Fu
,
J.
, and
Markwald
,
R. R.
,
2014
, “
Study of Droplet Formation Process During Drop-on-Demand Inkjetting of Living Cell-Laden Bioink
,”
Langmuir
,
30
(
30
), pp.
9130
9138
.
15.
Guillotin
,
B.
,
Souquet
,
A.
,
Catros
,
S.
,
Duocastella
,
M.
,
Pippenger
,
B.
,
Bellance
,
S.
,
Bareille
,
R.
,
Rémy
,
M.
,
Bordenave
,
L.
,
Amédée
,
J.
, and
Guillemot
,
F.
,
2010
, “
Laser Assisted Bioprinting of Engineered Tissue With High Cell Density and Microscale Organization
,”
Biomaterials
,
31
(
28
), pp.
7250
7256
.
16.
Guillemot
,
F.
,
Souquet
,
A.
,
Catros
,
S.
,
Lopez
,
J.
,
Faucon
,
M.
,
Pippenger
,
B.
,
Bareille
,
R.
,
Chollet
,
C.
,
Rémy
,
M.
,
Chabassier
,
P.
,
Durrieu
,
M.-C.
,
Fricain
,
J.-C.
, and
Amédée
,
J.
,
2008
, “
High-Throughput Laser Printing of Cells and Biomaterials for Tissue Engineering
,”
Acta Biomater.
,
6
(
7
), pp.
2494
2500
.
17.
Guillemot
,
F.
,
Souquet
,
A.
,
Catros
,
S.
, and
Guillotin
,
B.
,
2010
, “
Laser-Assisted Cell Printing: Principle, Physical Parameters Versus Cell Fate and Perspectives in Tissue Engineering
,”
Nanomedicine
,
5
(
3
), pp.
507
515
.
18.
Ali
,
M.
,
Pages
,
E.
,
Ducom
,
A.
,
Fontaine
,
A.
, and
Guillemot
,
F.
,
2014
, “
Controlling Laser-Induced Jet Formation for Bioprinting Mesenchymal Stem Cells With High Viability and High Resolution
,”
Biofabrication
,
6
(
4
), p.
045001
.
19.
Devillard
,
R.
,
Pagès
,
E.
,
Correa
,
M. M.
,
Kériquel
,
V.
,
Rémy
,
M.
,
Kalisky
,
J.
,
Ali
,
M.
,
Guillotin
,
B.
, and
Guillemot
,
F.
,
2014
, “
Cell Patterning by Laser-Assisted Bioprinting
,”
Methods Cell Biol.
,
119
, pp.
159
174
.
20.
Johnson
,
K.
,
Hashimoto
,
S.
,
Lotz
,
M.
,
Pritzker
,
K.
,
Goding
,
J.
, and
Terkeltaub
,
R.
,
2001
, “
Up-Regulated Expression of the Phosphodiesterase Nucleotide Pyrophosphatase Family Member PC-1 Is a Marker and Pathogenic Factor for Knee Meniscal Cartilage Matrix Calcification
,”
Arthritis Rheum.
,
44
(
5
), pp.
1071
1081
.
21.
Hsiong
,
S. X.
,
Boontheekul
,
T.
,
Huebsch
,
N.
, and
Mooney
,
D. J.
,
2009
, “
Cyclic Arginine-Glycine-Aspartate Peptides Enhance Three-Dimensional Stem Cell Osteogenic Differentiation
,”
Tissue Eng., Part A
,
15
(
2
), pp.
263
272
.
22.
Gruene
,
M.
,
Unger
,
C.
,
Koch
,
L.
,
Deiwick
,
A.
, and
Chichkov
,
B.
,
2011
, “
Dispensing Pico to Nanolitre of a Natural Hydrogel by Laser-Assisted Bioprinting
,”
Biomed. Eng. Online
,
10
, p.
19
.
23.
Eiraku
,
M.
,
Takata
,
N.
,
Ishibashi
,
H.
,
Kawada
,
M.
,
Sakakura
,
E.
,
Okuda
,
S.
,
Sekiguchi
,
K.
,
Adachi
,
T.
, and
Sasai
,
Y.
,
2011
, “
Self-Organizing Optic-Cup Morphogenesis in Three-Dimensional Culture
,”
Nature
,
472
(
7341
), pp.
51
56
.
24.
Lutolf
,
M. P.
, and
Hubbell
,
J. A.
,
2005
, “
Synthetic Biomaterials as Instructive Extracellular Microenvironments for Morphogenesis in Tissue Engineering
,”
Nat. Biotechnol.
,
23
(
1
), pp.
47
55
.
You do not currently have access to this content.