In this study, we report the bioprinting of a three-dimensional (3D) heterogeneous conduit structure encapsulating PC12 neural cells. A core–shell-based hybrid construct is fabricated by combining electrospinning, polymer extrusion, and cell-based bioprinting processes to create a multiscale and multimaterial conduit structure. PC12 nerve cells were shown to be printed with high cell viability (>95%) and to proliferate within the rolled construct at a rate consistent with traditional two-dimensional (2D) culture. Light microscopy and scanning electron microscopy (SEM) have also shown encapsulation of cells within the printed alginate gel and an even cell distribution throughout the heterogeneous cellular construct.
Issue Section:
Research Papers
Topics:
Bioprinting,
Electrospinning,
Fibers,
Hydrogels,
Manufacturing,
Polymers,
Shells,
Extruding,
Assaying,
Optical microscopy
References
1.
Weiss
, P.
, 2005
, “Frankenstein's Chips: Scientists Turn to Build-‘Em-Yourself Guinea Pigs
,” Sci. News
, 167
(2
), pp. 24
–26
.2.
Sung
, J. H.
, and Shuler
, M. L.
, 2009
, “A Micro Cell Culture Analog (μCCA) With 3-D Hydrogel Culture of Multiple Cell Lines to Assess Metabolism-Dependent Cytotoxicity of Anti-Cancer Drugs
,” Lab Chip
, 9
(10
), pp. 1385
–1394
.3.
Polini
, A.
, Prodanov
, L.
, Bhise
, N. S.
, Manoharan
, V.
, Dokmeci
, M. R.
, and Khademhosseini
, A.
, 2014
, “Organs-on-a-Chip: A New Tool for Drug Discovery
,” Expert Opin. Drug Discovery
, 9
(4
), pp. 335
–352
.4.
Vunjak Novakovic
, G.
, Eschenhagen
, T.
, and Mummery
, C.
, 2014
, “Myocardial Tissue Engineering: In Vitro Models
,” Cold Spring Harbor Perspect. Med.
, 4
(3
), p. a014076.5.
Novik
, E.
, Maguire
, T. J.
, Chao
, P.
, Cheng
, K. C.
, and Yarmush
, M. L.
, 2010
, “A Microfluidic Hepatic Coculture Platform for Cell-Based Drug Metabolism Studies
,” Biochem. Pharmacol.
, 79
(7
), pp. 1036
–1044
.6.
Lan
, S. F.
, Mroczka
, B.
, and Starly
, B.
, 2010
, “Long-Term Cultivation of HepG2 Liver Cells Encapsulated in Alginate Hydrogels: A Study of Cell Viability, Morphology and Drug Metabolism
,” Toxicology
, 24
(4
), pp. 1314
–1323
.7.
Griffith
, L. G.
, and Swartz
, M. A.
, 2006
, “Capturing Complex 3D Tissue Physiology In Vitro
,” Nat. Rev. Mol. Cell Biol.
, 7
(3
), pp. 211
–224
.8.
Mazzoleni
, G.
, Di Lorenzo
, D.
, and Steimberg
, N.
, 2009
, “Modelling Tissues in 3D: The Next Future of Pharmaco-Toxicology and Food Research?
,” Genes Nutr.
, 4
(1
), pp. 13
–22
.9.
Bao
, B.
, Jiang
, J.
, Yanase
, T.
, Nishi
, Y.
, and Morgan
, J. R.
, 2011
, “Connexon-Mediated Cell Adhesion Drives Microtissue Self-Assembly
,” FASEB J.
, 25
(1
), pp. 255
–264
.10.
Achilli
, T. M.
, McCalla
, S.
, Tripathi
, A.
, and Morgan
, J. R.
, 2012
, “Quantification of the Kinetics and Extent of Self-Sorting in Three Dimensional Spheroids
,” Tissue Eng., Part C
, 18
(4
), pp. 302
–309
.11.
Tejavibulya
, N.
, Youssef
, J.
, Bao
, B.
, Ferruccio
, T.-M.
, and Morgan
, J. R.
, 2011
, “Directed Self-Assembly of Large Scaffold-Free Multi-Cellular Honeycomb Structures
,” Biofabrication
, 3
(3
), p. 034110
.12.
Chang
, R.
, Emami
, K.
, Wu
, H.
, and Sun
, W.
, 2010
, “Biofabrication of a Three-Dimensional Liver Micro-Organ as an In Vitro Drug Metabolism Model
,” Biofabrication
, 2
(4
), p. 045004
.13.
Shin
, S. R.
, Aghaei-Ghareh-Bolagh
, B.
, Gao
, X.
, Nikkhah
, M.
, Jung
, S. M.
, Dolatshahi-Pirouz
, A.
, Kim
, S. B.
, Kim
, S. M.
, Dokmeci
, M. R.
, Tang
, X. S.
, and Khademhosseini
, A.
, 2014
, “Layer-by-Layer Assembly of 3D Tissue Constructs With Functionalized Graphene
,” Adv. Funct. Mater.
, 24
(39
), pp. 6136
–6144
.14.
Kang
, L.
, Chung
, B. G.
, Langer
, R.
, and Khademhosseini
, A.
, 2008
, “Microfluidics for Drug Discovery and Development: From Target Selection to Product Lifecycle Management
,” Drug Discovery Today
, 13
(1–2
), pp. 1
–13
.15.
Wei
, G.
, and Ma
, P. X.
, 2008
, “Nanostructured Biomaterials for Regeneration
,” Adv. Funct. Mater.
, 18
(22
), pp. 3566
–3582
.16.
Ahn
, H.
, Ju
, Y. M.
, Takahashi
, H.
, Williams
, D. F.
, Yoo
, J. J.
, Lee
, S. J.
, Okano
, T.
, and Atala
, A.
, 2015
, “Engineered Small Diameter Vascular Grafts by Combining Cell Sheet Engineering and Electrospinning Technology
,” Acta Biomater.
, 16
, pp. 14
–22
.17.
Jeffries
, E. M.
, and Wang
, Y.
, 2012
, “Biomimetic Micropatterned Multi-Channel Nerve Guides by Templated Electrospinning
,” Biotechnol. Bioeng.
, 109
(6
), pp. 1571
–1582
.18.
Purcell
, E. K.
, Singh
, A.
, and Kipke
, D. R.
, 2009
, “Alginate Composition Effects on a Neural Stem Cell-Seeded Scaffold
,” Tissue Eng., Part C
, 15
(4
), pp. 541
–550
.19.
Mosahebi
, A.
, Simon
, M.
, Wiberg
, M.
, and Terenghi
, G.
, 2001
, “A Novel Use of Alginate Hydrogel as Schwann Cell Matrix
,” Tissue Eng.
, 7
(5
), pp. 525
–534
.20.
Novikova
, L. N.
, Mosahebi
, A.
, Wiberg
, M.
, Terenghi
, G.
, Kellerth
, J. O.
, and Novikov
, L. N.
, 2006
, “Alginate Hydrogel and Matrigel as Potential Cell Carriers for Neurotransplantation
,” J. Biomed. Mater. Res., Part A
, 77
(2
), pp. 242
–252
.21.
Bozza
, A.
, Coates
, E. E.
, Incitti
, T.
, Ferlin
, K. M.
, Messina
, A.
, Menna
, E.
, Bozzi
, Y.
, Fisher
, J. P.
, and Casarosa
, S.
, 2014
, “Neural Differentiation of Pluripotent Cells in 3D Alginate-Based Cultures
,” Biomaterials
, 35
(16
), pp. 4636
–4645
.22.
Kitagawa
, Y.
, Naganuma
, Y.
, Yajima
, Y.
, Yamada
, M.
, and Seki
, M.
, 2014
, “Patterned Hydrogel Microfibers Prepared Using Multilayered Microfluidic Devices for Guiding Network Formation of Neural Cells
,” Biofabrication
, 6
(3
), p. 035011
.23.
Sun
, D.
, Chang
, C.
, Li
, S.
, and Lin
, L.
, 2006
, “Near Field Electrospinning
,” Nano Lett.
, 6
(4
), pp. 839
–842
.24.
Li
, W.-J.
, Jiang
, Y. J.
, and Tuan
, R. S.
, 2008
, “Cell–Nanofiber-Based Cartilage Tissue Engineering Using Improved Cell Seeding, Growth Factor, and Bioreactor Technologies
,” Tissue Eng., Part A
, 14
(5
), pp. 639
–648
.25.
Schumann
, D.
, Ekaputra
, A. K.
, Lam
, C. X.
, and Hutmacher
, D. W.
, 2007
, “Biomaterials/Scaffolds. Design of Bioactive, Multiphasic PCL/Collagen Type I and Type II-PCL-TCP/Collagen Composite Scaffolds for Functional Tissue Engineering of Osteochondral Repair Tissue by Using Electrospinning and FDM Techniques
,” Tissue Engineering, 2nd ed., H.
Hauser
, and M.
Fussenegger
, eds., Humana Press, pp. 101–124.26.
Hamid
, Q.
, Snyder
, J.
, Wang
, C.
, Timmer
, M.
, Hammer
, J.
, Guceri
, S.
, and Sun
, W.
, 2011
, “Fabrication of Three-Dimensional Scaffolds Using Precision Extrusion Deposition With an Assisted Cooling Device
,” Biofabrication
, 3
(3
), p. 034109
.27.
Shor
, L.
, Güçeri
, S.
, Wen
, X.
, Gandhi
, M.
, and Sun
, W.
, 2007
, “Fabrication of Three-Dimensional Polycaprolactone/Hydroxyapatite Tissue Scaffolds and Osteoblast-Scaffold Interactions
,” Biomaterials
, 28
(35
), pp. 5291
–5297
.28.
Diogo
, G. S.
, Gaspar
, V. M.
, Serra
, I. R.
, Fradique
, R.
, and Correia
, I. J.
, 2014
, “Manufacture of β-TCP/Alginate Scaffolds Through a Fab@Home Model for Application in Bone Tissue Engineering
,” Biofabrication
, 6
(2
), p. 025001
.29.
Kang
, K. H.
, Hockaday
, L. A.
, and Butcher
, J. T.
, 2013
, “Quantitative Optimization of Solid Freeform Deposition of Aqueous Hydrogels
,” Biofabrication
, 5
(3
), p. 035001
.30.
Sheshadri
, P.
, and Shirwaiker
, R. A.
, 2015
, “Characterization of Material–Process–Structure Interactions in the 3D Bioplotting of Polycaprolactone
,” 3D Print. Addit. Manuf.
, 2
(1
), pp. 20
–31
.31.
Chang
, R.
, Nam
, J.
, and Sun
, W.
, 2008
, “Effects of Dispensing Pressure and Nozzle Diameter on Cell Survival From Solid Freeform Fabrication-Based Direct Cell Writing
,” Tissue Eng.
, 14
(1
), pp. 41
–48
.32.
Khalil
, S.
, and Sun
, W.
, 2007
, “Biopolymer Deposition for Freeform Fabrication of Hydrogel Tissue Constructs
,” Mater. Sci. Eng.: C
, 27
(3
), pp. 469
–478
.33.
Adamskia
, D.
, Mayolb
, J.-F.
, Plateta
, N.
, Bergera
, F.
, Hérodinb
, F.
, and Wion
, D.
, 2007
, “Effects of Hoechst 33342 on C2C12 and PC12 Cell Differentiation
,” FEBS Lett.
, 581
(16
), pp. 3076
–3080
.34.
Rowley
, J. A.
, Madlambayan
, G.
, and Mooney
, D. J.
, 1999
, “Alginate Hydrogels as Synthetic Extracellular Matrix Materials
,” Biomaterials
, 20
(1
), pp. 45
–53
.Copyright © 2015 by ASME
You do not currently have access to this content.