Current cell-culture is largely performed on synthetic two-dimensional (2D) petri dishes or permeable supports such as Boyden chambers, mostly because of their ease of use and established protocols. It is generally accepted that modern cell biology research requires new physiologically relevant three-dimensional (3D) cell culture platform to mimic in vivo cell responses. To that end, we report the design and development of a suspended hydrogel membrane (ShyM) platform using gelatin methacrylate (GelMA) hydrogel. ShyM thickness (0.25–1 mm) and mechanical properties (10–70 kPa) can be varied by controlling the size of the supporting grid and concentration of GelMA prepolymer, respectively. GelMA ShyMs, with dual media exposure, were found to be compatible with both the cell-seeding and the cell-encapsulation approach as tested using murine 10T1/2 cells and demonstrated higher cellular spreading and proliferation as compared to flat GelMA unsuspended control. The utility of ShyM was also demonstrated using a case-study of invasion of cancer cells. ShyMs, similar to Boyden chambers, are compatible with standard well-plates designs and can be printed using commonly available 3D printers. In the future, ShyM can be potentially extended to variety of photosensitive hydrogels and cell types, to develop new in vitro assays to investigate complex cell–cell and cell–extracellular matrix (ECM) interactions.

References

1.
Tibbitt
,
M. W.
, and
Anseth
,
K. S.
,
2009
, “
Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture
,”
Biotechnol. Bioeng.
,
103
(
4
), pp.
655
663
.
2.
Hutmacher
,
D. W.
,
Horch
,
R. E.
,
Loessner
,
D.
,
Rizzi
,
S.
,
Sieh
,
S.
,
Reichert
,
J. C.
,
Clements
,
J. A.
,
Beier
,
J. P.
,
Arkudas
,
A.
, and
Bleiziffer
,
O.
,
2009
, “
Translating Tissue Engineering Technology Platforms Into Cancer Research
,”
J. Cell. Mol. Med.
,
13
(
8a
), pp.
1417
1427
.
3.
Griffith
,
L. G.
, and
Swartz
,
M. A.
,
2006
, “
Capturing Complex 3D Tissue Physiology In Vitro
,”
Nat. Rev. Mol. Cell Biol.
,
7
(
3
), pp.
211
224
.
4.
Albini
,
A.
,
Iwamoto
,
Y.
,
Kleinman
,
H.
,
Martin
,
G.
,
Aaronson
,
S.
,
Kozlowski
,
J.
, and
McEwan
,
R.
,
1987
, “
A Rapid In Vitro Assay for Quantitating the Invasive Potential of Tumor Cells
,”
Cancer Res.
,
47
(
12
), pp.
3239
3245
.
5.
Albini
,
A.
, and
Benelli
,
R.
,
2007
, “
The Chemoinvasion Assay: A Method to Assess Tumor and Endothelial Cell Invasion and Its Modulation
,”
Nat. Protocols
,
2
(
3
), pp.
504
511
.
6.
Marshall
,
J.
,
2011
, “
Transwell® Invasion Assays
,”
Cell Migration
,
Springer
,
New York
, pp.
97
110
.
7.
Loessner
,
D.
,
Stok
,
K. S.
,
Lutolf
,
M. P.
,
Hutmacher
,
D. W.
,
Clements
,
J. A.
, and
Rizzi
,
S. C.
,
2010
, “
Bioengineered 3D Platform to Explore Cell–ECM Interactions and Drug Resistance of Epithelial Ovarian Cancer Cells
,”
Biomaterials
,
31
(
32
), pp.
8494
8506
.
8.
Schwartz
,
M. P.
,
Fairbanks
,
B. D.
,
Rogers
,
R. E.
,
Rangarajan
,
R.
,
Zaman
,
M. H.
, and
Anseth
,
K. S.
,
2010
, “
A Synthetic Strategy for Mimicking the Extracellular Matrix Provides New Insight About Tumor Cell Migration
,”
Integr. Biol.
,
2
(
1
), pp.
32
40
.
9.
Artym
,
V. V.
,
Yamada
,
K. M.
, and
Mueller
,
S. C.
,
2009
, “
ECM Degradation Assays for Analyzing Local Cell Invasion
,”
Extracellular Matrix Protocols
,
Springer
,
New York
, pp.
211
219
.
10.
Nyström
,
M.
,
Thomas
,
G.
,
Stone
,
M.
,
Mackenzie
,
I.
,
Hart
,
I.
, and
Marshall
,
J.
,
2005
, “
Development of a Quantitative Method to Analyse Tumour Cell Invasion in Organotypic Culture
,”
J. Pathol.
,
205
(
4
), pp.
468
475
.
11.
Gill
,
B. J.
,
Gibbons
,
D. L.
,
Roudsari
,
L. C.
,
Saik
,
J. E.
,
Rizvi
,
Z. H.
,
Roybal
,
J. D.
,
Kurie
,
J. M.
, and
West
,
J. L.
,
2012
, “
A Synthetic Matrix With Independently Tunable Biochemistry and Mechanical Properties to Study Epithelial Morphogenesis and EMT in a Lung Adenocarcinoma Model
,”
Cancer Res.
,
72
(
22
), pp.
6013
6023
.
12.
Huh
,
D.
,
Hamilton
,
G. A.
, and
Ingber
,
D. E.
,
2011
, “
From 3D Cell Culture to Organs-on-Chips
,”
Trends Cell Biol.
,
21
(
12
), pp.
745
754
.
13.
Minuth
,
W. W.
,
Denk
,
L.
, and
Glashauser
,
A.
,
2010
, “
A Modular Culture System for the Generation of Multiple Specialized Tissues
,”
Biomaterials
,
31
(
11
), pp.
2945
2954
.
14.
Grinnell
,
F.
,
2000
, “
Fibroblast–Collagen–Matrix Contraction: Growth-Factor Signalling and Mechanical Loading
,”
Trends Cell Biol.
,
10
(
9
), pp.
362
365
.
15.
Bruggeman
,
L. A.
,
Doan
,
R. P.
,
Loftis
,
J.
,
Darr
,
A.
, and
Calabro
,
A.
,
2012
, “
A Cell Culture System for the Structure and Hydrogel Properties of Basement Membranes: Application to Capillary Walls
,”
Cellular and Mol. Bioeng.
,
5
(
2
), pp.
194
204
.
16.
Mohammadi
,
H.
,
Janmey
,
P. A.
, and
McCulloch
,
C. A.
,
2014
, “
Lateral Boundary Mechanosensing by Adherent Cells in a Collagen Gel System
,”
Biomaterials
,
35
(
4
), pp.
1138
1149
.
17.
Gonen-Wadmany
,
M.
,
Oss-Ronen
,
L.
, and
Seliktar
,
D.
,
2007
, “
Protein–Polymer Conjugates for Forming Photopolymerizable Biomimetic Hydrogels for Tissue Engineering
,”
Biomaterials
,
28
(
26
), pp.
3876
3886
.
18.
Nichol
,
J. W.
,
Koshy
,
S. T.
,
Bae
,
H.
,
Hwang
,
C. M.
,
Yamanlar
,
S.
, and
Khademhosseini
,
A.
,
2010
, “
Cell-Laden Microengineered Gelatin Methacrylate Hydrogels
,”
Biomaterials
,
31
(
21
), pp.
5536
5544
.
19.
Soman
,
P.
,
Chung
,
P. H.
,
Zhang
,
A. P.
, and
Chen
,
S.
,
2013
, “
Digital Microfabrication of User-Defined 3D Microstructures in Cell-Laden Hydrogels
,”
Biotechnol. Bioeng.
,
110
(
11
), pp.
3038
3047
.
20.
Fairbanks
,
B. D.
,
Singh
,
S. P.
,
Bowman
,
C. N.
, and
Anseth
,
K. S.
,
2011
, “
Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction
,”
Macromolecules
,
44
(
8
), pp.
2444
2450
.
21.
Brinkman
,
W. T.
,
Nagapudi
,
K.
,
Thomas
,
B. S.
, and
Chaikof
,
E. L.
,
2003
, “
Photo-Cross-Linking of Type I Collagen Gels in the Presence of Smooth Muscle Cells: Mechanical Properties, Cell Viability, and Function
,”
Biomacromolecules
,
4
(
4
), pp.
890
895
.
22.
Axelrod
,
D.
,
Koppel
,
D.
,
Schlessinger
,
J.
,
Elson
,
E.
, and
Webb
,
W.
,
1976
, “
Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics
,”
Biophys. J.
,
16
(
9
), pp.
1055
1069
.
23.
Leddy
,
H. A.
, and
Guilak
,
F.
,
2003
, “
Site-Specific Molecular Diffusion in Articular Cartilage Measured Using Fluorescence Recovery After Photobleaching
,”
Ann. Biomed. Eng.
,
31
(
7
), pp.
753
760
.
24.
Lieleg
,
O.
,
Baumgärtel
,
R. M.
, and
Bausch
,
A. R.
,
2009
, “
Selective Filtering of Particles by the Extracellular Matrix: An Electrostatic Bandpass
,”
Biophys. J.
,
97
(
6
), pp.
1569
1577
.
25.
Lieleg
,
O.
, and
Ribbeck
,
K.
,
2011
, “
Biological Hydrogels as Selective Diffusion Barriers
,”
Trends Cell Biol.
,
21
(
9
), pp.
543
551
.
26.
Nguyen
,
D. X.
,
Bos
,
P. D.
, and
Massague
,
J.
,
2009
, “
Metastasis: From Dissemination to Organ-Specific Colonization
,”
Nat. Rev. Cancer
,
9
(
4
), pp.
274
284
.
27.
Cailleau
,
R.
,
Young
,
R.
,
Olive
,
M.
, and
Reeves
,
W. J.
, Jr.
,
1974
, “
Breast Tumor Cell Lines From Pleural Effusions
,”
J. Nat. Cancer Inst.
,
53
(
3
), pp.
661
674
.
28.
Nicodemus
,
G. D.
, and
Bryant
,
S. J.
,
2008
, “
Cell Encapsulation in Biodegradable Hydrogels for Tissue Engineering Applications
,”
Tissue Eng. Part B Rev.
,
14
(
2
), pp.
149
165
.
29.
Drury
,
J. L.
, and
Mooney
,
D. J.
,
2003
, “
Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications
,”
Biomaterials
,
24
(
24
), pp.
4337
4351
.
30.
Hunt
,
N. C.
, and
Grover
,
L. M.
,
2010
, “
Cell Encapsulation Using Biopolymer Gels for Regenerative Medicine
,”
Biotechnol. Lett.
,
32
(
6
), pp.
733
742
.
31.
Wirtz
,
D.
,
Konstantopoulos
,
K.
, and
Searson
,
P. C.
,
2011
, “
The Physics of Cancer: The Role of Physical Interactions and Mechanical Forces in Metastasis
,”
Nat. Rev. Cancer
,
11
(
7
), pp.
512
522
.
32.
Gieni
,
R. S.
, and
Hendzel
,
M. J.
,
2008
, “
Mechanotransduction From the ECM to the Genome: Are the Pieces Now in Place?
,”
J. Cell. Biochem.
,
104
(
6
), pp.
1964
1987
.
33.
Bott
,
K.
,
Upton
,
Z.
,
Schrobback
,
K.
,
Ehrbar
,
M.
,
Hubbell
,
J. A.
,
Lutolf
,
M. P.
, and
Rizzi
,
S. C.
,
2010
, “
The Effect of Matrix Characteristics on Fibroblast Proliferation in 3D Gels
,”
Biomaterials
,
31
(
32
), pp.
8454
8464
.
34.
Even-Ram
,
S.
, and
Yamada
,
K. M.
,
2005
, “
Cell Migration in 3D Matrix
,”
Curr. Opin. Cell Biol.
,
17
(
5
), pp.
524
532
.
35.
Janmey
,
P. A.
, and
Miller
,
R. T.
,
2011
, “
Mechanisms of Mechanical Signaling in Development and Disease
,”
J. Cell Sci.
,
124
(
1
), pp.
9
18
.
36.
Burdick
,
J. A.
, and
Anseth
,
K. S.
,
2002
, “
Photoencapsulation of Osteoblasts in Injectable RGD-Modified PEG Hydrogels for Bone Tissue Engineering
,”
Biomaterials
,
23
(
22
), pp.
4315
4323
.
37.
Bryant
,
S. J.
, and
Anseth
,
K. S.
,
2002
, “
Hydrogel Properties Influence ECM Production by Chondrocytes Photoencapsulated in Poly(Ethylene Glycol) Hydrogels
,”
J. Biomed. Mater. Res.
,
59
(
1
), pp.
63
72
.
38.
DeForest
,
C. A.
, and
Anseth
,
K. S.
,
2012
, “
Advances in Bioactive Hydrogels to Probe and Direct Cell Fate
,”
Ann. Rev. Chem. Biomol. Eng.
,
3
(
1
), pp.
421
444
.
You do not currently have access to this content.