Nanocomposite materials filled with multiwall carbon nanotubes (MWCNTs) having three types of structures, i.e., longer (200 μm), shorter (20–50 μm), and aminated (20–50 μm), are manufactured for microwave absorption (MA) in 11–17 GHz frequency range. Microstructure, dielectric permittivity, direct current (DC) electrical conductivity, and MA properties of the MWCNTs–epoxy nanocomposite were investigated. A correlation has been developed between the structure (aspect ratio and surface functionality) of MWCNTs, electrical conductivity of the composite, and MA (return loss (RL)). E-glass/epoxy composite filled with longer carbon nanotubes (CNTs) has shown higher RL as compared to that of other two nanocomposites. The measurements have shown that the magnitude of RL of microwaves depends strongly on the structure of MWCNTs used in the composite. Furthermore, the effect of synthesis route followed for the manufacturing of nanocomposite on its electrical conductivity and microwave absorbing properties is also investigated; three different approaches were followed to manufacture CNT/epoxy nanocomposites from longer CNTs (200 μm).

References

References
1.
Saib
,
A.
,
Bednarz
,
L.
,
Daussin
,
R.
,
Bailly
,
C.
,
Lou
,
X.
,
Thomassin
,
J.
,
Pagnoulle
,
C.
,
Detrembleur
,
C.
,
Jerome
,
R.
, and
Huynen
,
I.
,
2006
, “
Carbon Nanotube Composites for Broadband Microwave Absorbing Materials
,”
IEEE Trans. Microwave Theory Tech.
,
54
(
6
), pp.
2745
2754
.10.1109/TMTT.2006.874889
2.
Park
,
K. Y.
,
Lee
,
S. E.
,
Kim
,
C. G.
, and
Han
,
J. H.
,
2007
, “
Application of MWNT-Added Glass Fabric/Epoxy Composites to Electromagnetic Wave Shielding Enclosure
,”
Compos. Struct.
,
81
(
3
), pp.
401
406
.10.1016/j.compstruct.2006.08.029
3.
Qin
,
F.
, and
Brosseau
,
C.
,
2012
, “
A Review and Analysis of Microwave Absorption in Polymer Composites Filled With Carbonaceous Particle
,”
J. Appl. Phys.
,
111
(
6
), p.
061301
.10.1063/1.3688435
4.
Wang
,
Z.
, and
Guang-Lin
,
Z.
,
2013
, “
Microwave Absorption Properties of Carbon Nanotubes-Epoxy Composites in a Frequency Range of 2–20 GHz
,”
J. Compos. Mater.
,
3
(
2
), pp.
17
23
.10.4236/ojcm.2013.32003
5.
Dinesh
,
K.
,
Agrawal
,
1998
, “
Microwave Processing of Ceramics
,”
Curr. Opinion in Solid State and Mater. Sci.
,
3
(
5
), pp.
480
485
.10.1016/S1359-0286(98)80011-9
6.
Martin
,
C. A.
,
Sandler
,
J. K. W.
,
Windle
,
A. H.
,
Schwarz
,
M. K.
,
Bauhofer
,
W.
,
Schulte
,
K.
, and
Shaffer
,
M. S. P.
,
2005
, “
Electric Field-Induced Aligned Multi-Wall Carbon Nanotube Networks in Epoxy Composites
,”
Polymer
,
46
(
3
), pp.
877
886
.10.1016/j.polymer.2004.11.081
7.
Sandler
,
J. K. W.
,
Kirk
,
J. E.
,
Kinloch
,
I. A.
,
Shaffer
,
M. S. P.
, and
Windle
,
A. H.
,
2003
, “
Ultra-Low Electrical Percolation Threshold in Carbon-Nanotube-Epoxy Composites
,”
Polymer
,
44
(
19
), pp.
5893
5899
.10.1016/S0032-3861(03)00539-1
8.
Bai
,
J. B.
, and
Allaoui
,
A.
,
2003
, “
Effect of the Length and the Aggregate Size of MWNTs on the Improvement Efficiency of the Mechanical and Electrical Properties of Nanocomposites—Experimental Investigation
,”
Composites, Part A
,
34
(
8
), pp.
689
694
.10.1016/S1359-835X(03)00140-4
9.
Grossiord
,
N.
,
Loos
,
J.
,
Regev
,
O.
, and
Koning
,
C. E.
,
2006
, “
Toolbox for Dispersing Carbon Nanotubes Into Polymers to Get Conductive Nanocomposites
,”
Chem. Mater.
,
18
(
5
), pp.
1089
1099
.10.1021/cm051881h
10.
Li
,
J.
,
Ma
,
P. C.
,
Chow
,
W.
,
To
,
C. K.
,
Tang
,
B. Z.
, and
Kim
,
J. K.
,
2007
, “
Correlations Between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes
,”
Adv. Funct. Mater.
,
17
(
16
), pp.
3207
3215
.10.1002/adfm.200700065
11.
Pecastaings
,
G.
,
Delhaes
,
P.
,
Derre
,
A.
,
Saadaoui
,
H.
,
Carmona
,
F.
, and
Cui
,
S.
,
2004
, “
Role of Interfacial Effects in Carbon Nanotube/Epoxy Nanocomposite Behavior
,”
J. Nanosci. Nanotechnol.
,
4
(
7
), pp.
838
843
.10.1166/jnn.2004.114
12.
Kenig
,
S.
, and
Akovali
,
G.
, eds.,
2001
,
Handbook of Composite Fabrication
,
1st ed.
,
iSmithers Rapra Publishing
,
Shawbury, Shrewsbury, UK
.
13.
Baker
,
A. A.
,
Dutton
,
S.
, and
Kelly
,
D.
,
2004
,
Composite Materials for Aircraft Structures
,
2nd ed.
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
14.
Mitchell
,
C. A.
,
Bahr
,
J. L.
,
Arepalli
,
S.
,
Tour
,
J. M.
, and
Krishnamoorti
,
R.
,
2002
, “
Dispersion of Functionalized Carbon Nanotubes in Polystyrene
,”
Macromolecules
,
35
(
23
), pp.
8825
8830
.10.1021/ma020890y
15.
Thakre
,
P. R.
, and
Bisrat
,
Y.
,
2010
, “
Electrical and Mechanical Properties of Carbon Nanotube-Epoxy Nanocomposites
,”
J. Appl. Polym. Sci.
,
116
(
1
), pp.
191
202
.10.1002/app.31122
16.
Santos
,
A. S.
,
Leite
,
T. D. N.
,
Furtado
,
C. A.
,
Welter
,
C.
,
Pardini
,
L. C.
, and
Silva
,
G. G.
,
2008
, “
Morphology, Thermal Expansion, and Electrical Conductivity of Multiwalled Carbon Nanotube/Epoxy Composites
,”
J. Appl. Polym. Sci.
,
108
(
2
), pp.
979
986
.10.1002/app.27614
17.
Zilli
,
D.
,
Goyanes
,
S.
,
Escobar
,
M. M.
,
Chiliotte
,
C.
,
Bekeris
,
V.
, and
Cukierman
,
A. L.
,
2007
, “
Comparative Analysis of Electric, Magnetic, and Mechanical Properties of Epoxy Matrix Composites With Different Contents of Multiple Walled Carbon Nanotubes
,”
Polym. Compos.
,
28
(
5
), pp.
612
617
.10.1002/pc.20288
18.
Bryning
,
M. B.
,
Islam
,
M. F.
,
Kikkawa
,
J. M.
, and
Yodh
,
A. G.
,
2005
, “
Very Low Conductivity Threshold in Bulk Isotropic Single-Walled Carbon Nanotube–Epoxy Composites
,”
Adv. Mater.
,
17
(
9
), pp.
1186
1191
.10.1002/adma.200401649
19.
Schueler
,
R.
,
Petermann
,
J.
,
Schulte
,
K.
, and
Wentzel
,
H.
,
1997
, “
Agglomeration and Electrical Percolation Behavior of Carbon Black Dispersed in Epoxy Resin
,”
J. Appl. Polym. Sci.
,
63
(
13
), pp.
1741
1746
.10.1002/(SICI)1097-4628(19970328)63:13<1741::AID-APP5>3.0.CO;2-G
20.
Park
,
S.-H.
,
Theilmann
,
P. T.
,
Asbeck
,
P. M.
, and
Prabhakar
,
R. B.
,
2009
, “
Enhanced Electromagnetic Interference Shielding Through the Use of Functionalized Carbon-Nanotube-Reactive Polymer Composites
,”
IEEE Trans. Nanotechnol.
, Paper No. TNANO-00013-2009.10.1109/TNANO.2009.2032656
21.
Yang
,
R. B.
,
Kuo
,
W. S.
, and
Lai
,
H. C.
,
2014
, “
Effect of Carbon Nanotube Dispersion on the Complex Permittivity and Absorption of Nanocomposites in 2–18 GHz Ranges
,”
J. Appl. Polym. Sci.
,
131
(
21
), p.
40963
.10.1002/app.40963
22.
Sun
,
X.-G.
,
Gao
,
M.
,
Li
,
C.
, and
Wu
,
Y.
,
2011
, “
Microwave Absorption Characteristics of Carbon Nanotubes
,”
Carbon Nanotubes-Synthesis, Characterization, Applications
,
S.
Yellampalli
, ed., InTech, Rijeka, Croatia.10.5772/16514
23.
Lanticse
,
L. J.
,
Tanabe
,
Y.
,
Matsui
,
K.
,
Kaburagi
,
Y.
,
Suda
,
K.
, and
Hoteida
,
M.
,
2006
, “
Shear-Induced Preferential Alignment of Carbon Nanotubes Resulted in Anisotropic Electrical Conductivity of Polymer Composites
,”
Carbon
,
44
(
14
), pp.
3078
3086
.10.1016/j.carbon.2006.05.008
24.
Wichmann
,
M. H. G.
,
Sumfleth
,
J.
,
Fiedler
,
B.
,
Gojny
,
F. H.
, and
Schulte
,
K.
,
2006
, “
Multiwall Carbon Nanotube/Epoxy Composites Produced by a Masterbatch Process
,”
Mech. Compos. Mater.
,
42
(
5
), pp.
395
406
.10.1007/s11029-006-0050-3
25.
Li
,
J.
,
Ma
,
P. C.
,
Chow
,
W.
,
To
,
C. K.
, and
Tang
,
B. Z.
,
Kim
,
J. K.
,
2007
, “
Correlations Between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes
,”
Adv. Funct. Mater.
,
17
(
16
), pp.
3207
3215
.10.1002/adfm.200700065
You do not currently have access to this content.