The new method for metal oxide nanopowder production is proposed. It is the evaporation–condensation using a focused microwave radiation. The source of microwaves is technological gyrotron with frequency of 24 GHz and power up to 7 kW with the energy density flux of 13 kW/cm2. Radiation was focused on the layer of powder of the treated material to ensure its evaporation, subsequent condensation of vapor in the gas stream, and deposition of particles on the water-cooled surface. Deposited powders consist of particles whose sizes are in the range of 20 nm to 1 μm. The powder consists of particles having different shapes—close to spherical shape as well as octahedral, which indicates that the mechanism of particles formation is “vapor–liquid–crystal” as well as “vapor–crystal.” The maximum evaporation rate was 100 g/hr. The proposed approach is original and extends the possible methods of producing nanoparticles.

References

References
1.
Vajtai
,
R.
,
2013
,
Springer Handbook of Nanomaterials
,
Springer Science & Business Media
,
Berlin, Heidelberg
, p.
1257
.
2.
Guo
,
Z.
, and
Tan
,
L.
,
2009
,
Fundamentals and Applications of Nanomaterials
,
Artech House
,
Norwood, MA
, p.
249
.
3.
Nogi
,
K.
,
Naito
,
M.
, and
Yokoyama
,
T.
,
2012
,
Nanoparticle Technology Handbook
,
2nd ed.
,
Elsevier
,
Amsterdam
, p.
730
.
4.
Altavilla
,
C.
, and
Ciliberto
,
E.
,
2010
,
Inorganic Nanoparticles: Synthesis, Applications, and Perspectives
,
CRC Press
,
Boca Raton
, p.
576
.
5.
Swihart
,
M. T.
,
2003
, “
Vapor-Phase Synthesis of Nanoparticles
,”
Curr. Opin. Colloid Interface Sci.
,
8
(
1
), pp.
127
133
.
6.
Granqvist
,
C.
,
Kish
,
L.
, and
Marlow
,
W.
,
2004
,
Gas Phase Nanoparticle Synthesis
,
Springer Science & Business Media
,
Berlin
, p.
186
.
7.
Lorke
,
A.
,
Winterer
,
M.
,
Schmechel
,
R.
, and
Schulz
,
C.
,
2012
,
Nanoparticles From the Gasphase. Formation, Structure, Properties
,
Springer Science & Business Media
,
Berlin, Heidelberg
, p.
418
.
8.
Kotov
,
Y. A.
,
2003
, “
Electric Explosion of Wires as a Method for Preparation of Nanopowders
,”
J. Nanopart. Res.
,
5
(
5–6
), pp.
539
550
.
9.
Kato
,
M.
,
1976
, “
Preparation of Ultrafine Particles of Refractory Oxides by Gas-Evaporation Method
,”
Jpn. J. Appl. Phys.
,
15
(
5
), pp.
757
760
.
10.
Ullmann
,
M.
,
Friedlander
,
S. K.
, and
Schmidt-Ott
,
A.
,
2002
, “
Nanoparticle Formation by Laser Ablation
,”
J. Nanopart. Res.
,
4
(
6
), pp.
499
509
.
11.
Osipov
,
V. V.
,
Kotov
,
Yu. A.
,
Ivanov
,
M. G.
,
Samatov
,
O. M.
,
Lisenkov
,
V. V.
,
Platonov
,
V. V.
,
Murzakaev
,
A. M.
,
Medvedev
,
A. I.
, and
Azarkevich
,
E. I.
,
2006
, “
Laser Synthesis of Nanopowders
,”
Laser Phys.
,
16
(
1
), pp.
116
125
.
12.
Phillips
,
C.
,
2007
,
Laser Ablation and Its Applications
,
Springer, Berlin
.
13.
Hahn
,
A.
,
Barcikowski
,
S.
, and
Chichkov
,
B.
,
2008
, “
Influences on Nanoparticle Production During Pulsed Laser Ablation
,”
J. Laser Micro/Nanoeng.
,
3
(
2
), pp.
73
77
.
14.
Semaltianos
,
N. G.
,
2010
, “
Nanoparticles by Laser Ablation
,”
Crit. Rev. Solid State Mater. Sci.
,
35
(
2
), pp.
105
124
.
15.
Wagener
,
Ph.
,
Barcikowski
,
S.
, and
Barsch
,
N.
,
2011
, “
Laser Technology: Fabrication of Nanoparticles and Nanomaterials Using Laser Ablation in Liquids
,”
Photonik Int.
,
1
, pp.
20
23
.
16.
Kotov
,
Y. A.
,
Samatov
,
O. M.
,
Ivanov
,
M. G.
,
Murzakaev
,
A. M.
,
Medvedev
,
A. I.
,
Timoshenkova
,
O. R.
,
Demina
,
T. M.
, and
V'yukhina
,
I. V.
,
2011
, “
Production and Characteristics of Composite Nanopowders Using a Fiber Ytterbium Laser
,”
Tech. Phys.
,
56
(
5
), pp.
652
655
.
17.
Yang
,
G.
,
2012
,
Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials
,
Pan Stanford Publishing
,
Singapore
.
18.
Habiba
,
K.
,
Makarov
,
V. I.
,
Weiner
,
B. R.
, and
Morell
,
G.
,
2014
, “
Fabrication of Nanomaterials by Pulsed Laser Synthesis
,”
Manufacturing Nanostructures
,
One Central Press
,
Manchester, UK
.
19.
Bardakhanov
,
S. P.
,
Korchagin
,
A. I.
,
Kuksanov
,
N. K.
,
Lavrukhin
,
A. V.
,
Salimov
,
R. A.
,
Fadeev
,
S. N.
, and
Cherepkov
,
V. V.
,
2006
, “
Nanopowders Obtained by Evaporating Initial Substances in an Electron Accelerator at Atmospheric Pressure
,”
Dokl. Phys.
,
51
(
7
), pp.
353
356
.
20.
Sokovnin
,
S. Yu.
, and
Il'ves
,
V. G.
,
2012
, “
Production of Nanopowders of Metal Oxides Using Pulsed Electron Beam in Low Pressure Gas
,” ISRN Nanomaterials, Report No. 504634.
21.
Zavjalov
,
A. P.
,
Zobov
,
K. V.
,
Chakin
,
I. K.
,
Syzrantsev
,
V. V.
, and
Bardakhanov
,
S. P.
,
2014
, “
Synthesis of Copper Nanopowders Using Electron-Beam Evaporation at Atmospheric Pressure of Inert Gas
,”
Nanotechnol. Russia
,
9
(
11–12
), pp.
660
666
.
22.
Tanakaa
,
M.
, and
Watanabeb
,
T.
,
2008
, “
Vaporization Mechanism From Sn–Ag Mixture by Ar–H2 Arc for Nanoparticle Preparation
,”
Thin Solid Films
,
516
(
19
), pp.
6645
6649
.
23.
Mahoney
,
W.
, and
Andres
,
R. P.
,
1995
, “
Aerosol Synthesis of Nanoscale Clusters Using Atmospheric Arc Evaporation
,”
Mater. Sci. Eng., A
,
204
(
1–2
), pp.
160
164
.
24.
Munz
,
R. J.
,
Addona
,
T.
, and
da Cruz
,
A- C.
,
1999
, “
Application of Transferred Arcs to the Production of Nanoparticles
,”
Pure Appl. Chem.
,
71
(
10
), pp.
1889
1897
.
25.
Kong
,
P.
, and
Kawczak
,
A.
,
2008
, “
Plasma Synthesis of Nanoparticles for Nanocomposite Energy Applications
,”
8th World Congress Nanocomposites
, San Diego, CA, Sept. 15–18, preprint, pp. 1–12.
26.
Tabrizi
,
N. S.
,
Ullmann
,
M.
,
Vons
,
V. A.
,
Lafont
,
U.
, and
Schmidt-Ott
,
A.
,
2009
, “
Generation of Nanoparticles by Spark Discharge
,”
J. Nanopart. Res.
,
11
(
2
), pp.
315
332
.
27.
Shin
,
M.-G.
, and
Park
,
D.-W.
,
2010
, “
Synthesis of Copper Nanopowders by Transferred Arc and Non-Transferred Arc Plasma Systems
,”
J. Optoelectron. Adv. Mater.
,
12
(
3
), pp.
528
534
.
28.
Shigeta
,
M.
, and
Murphy
,
A. B.
,
2011
, “
Thermal Plasmas for Nanofabrication
,”
J. Phys. D: Appl. Phys.
,
44
(
17
), p.
174025
.
29.
Seo
,
J.-H.
, and
Hong
,
B.-H.
,
2012
, “
Thermal Plasma Synthesis of Nano-Sized Powders
,”
Nucl. Eng. Technol.
,
44
(
1
), pp.
9
20
.
30.
Malmberg
,
D.
,
Hahlin
,
P.
, and
Nilsson
,
E.
,
2007
, “
Microwave Technology in Steel and Metal Industry, an Overview
,”
ISIJ Int.
,
47
(
4
), pp.
533
538
.
31.
Agrawal
,
D.
,
2010
, “
Latest Global Developments in Microwave Materials Processing
,”
Mater. Res. Innovations
,
14
(
10
), pp.
3
8
.
32.
Cao
,
W.
,
2012
,
The Development and Application of Microwave Heating
,
InTech
,
Rijeka, Croatia
.
33.
Kitchen
,
H. J.
,
Vallance
,
S. R.
,
Kennedy
,
J. L.
,
Tapia-Ruiz
,
N.
,
Carassiti
,
L.
,
Harrison
,
A.
,
Whittaker
,
A. G.
,
Drysdale
,
T. D.
,
Kingman
,
S. W.
, and
Gregory
,
D. H.
,
2014
, “
Modern Microwave Methods in Solid-State Inorganic Materials Chemistry: From Fundamentals to Manufacturing
,”
Chem. Rev.
,
114
(
2
), pp.
1170
1206
.
34.
Zapevalov
,
V. E.
,
2012
, “
Evolution of the Gyrotrons
,”
Radiophys. Quantum Electron.
,
54
(
8–9
), pp.
507
518
.
35.
Palatnik
,
L. S.
, and
Papirov
,
I. I.
,
1971
,
Epitaxial Films
,
Nauka
,
Moscow, Russia
(in Russian).
36.
Komnik
,
Yu. F.
,
1979
,
Physics of Metal Films. Dimensional and Structural Effects
,
Atomizdat
,
Moscow, Russia
(in Russian).
37.
Newton
,
M. C.
, and
Warburton
,
P. A.
,
2007
, “
ZnO Tetrapod Nanocrystals
,”
Mater. Today
,
10
(
5
), pp.
50
54
.
You do not currently have access to this content.