An in vitro cell culture system is developed for studying the uptake characteristics of nanoparticles (NPs) by endothelial cells under shear stress. Results show that the smaller polystyrene nanospheres are uptaken more than larger nanospheres for sizes ranging from 100 nm to 500 nm for 12, 24, and 48 hrs delivery times. While the result is similar to that found in static cultures, the observed trend is different from NP delivery behaviors to a simple glass surface in a flow, where no clear size dependence was observed because of repulsive electrostatic force on marginating NPs. The trend is also opposite to the behavior found in another study of the adhesion of labeled particles onto endothelial cells in whole blood flow. The comparison shows that the reduced zeta potential of NPs in a serum-containing cell medium and particle removal by cells results in reduced repulsive electrostatic force on marginating NPs. Consequently, the uptake behaviors are dominated by Brownian diffusion and cell membrane deformation process, which favor the uptake of NPs with reduced sizes.

References

References
1.
Lasic
,
D. D.
, and
Papahadjopoulos
,
D.
,
1995
, “
Liposomes Revisited
,”
Science
,
267
(
5202
), pp.
1275
1276
.
2.
Toy
,
R.
,
Peiris
,
P. M.
,
Ghaghada
,
K. B.
, and
Karathanasis
,
E.
,
2014
, “
Shaping Cancer Nanomedicine: The Effect of Particle Shape on the In Vivo Journey of Nanoparticles Review
,”
Nanomedicine
,
9
(
1
), pp.
121
134
.
3.
Agarwal
,
R.
, and
Roy
,
K.
,
2013
, “
Intracellular Delivery of Polymeric Nanocarriers: A Matter of Size, Shape, Charge, Elasticity and Surface Composition
,”
Ther. Delivery
,
4
(
6
), pp.
705
723
.
4.
Foged
,
C.
,
Brodin
,
B.
,
Frokjaer
,
S.
, and
Sundblad
,
A.
,
2005
, “
Particle Size and Surface Charge Affect Particle Uptake by Human Dendritic Cells in an In Vitro Model
,”
Int. J. Pharm.
,
298
(
2
), pp.
315
322
.
5.
Swaminathan
,
T. N.
,
Liu
,
J.
,
Balakrishnan
,
U.
,
Ayyaswamy
,
P. S.
,
Radhakrishnan
,
R.
, and
Eckmann
,
D. M.
,
2011
, “
Dynamic Factors Controlling Carrier Anchoring on Vascular Cells
,”
IUBMB Life
,
63
(
8
), pp.
640
647
.
6.
Lin
,
A.
,
Sabnis
,
A.
,
Kona
,
S.
,
Nattama
,
S.
,
Patel
,
H.
,
Dong
,
J.-F.
, and
Nguyen
,
K. T.
,
2010
, “
Shear-Regulated Uptake of Nanoparticles by Endothelial Cells and Development of Endothelial-Targeting Nanoparticles
,”
J. Biomed. Mater. Res., Part A
,
93
(
3
), pp.
833
842
.
7.
He
,
C.
,
Hu
,
Y.
,
Yin
,
L.
,
Tang
,
C.
, and
Yin
,
C.
,
2010
, “
Effects of Particle Size and Surface Charge on Cellular Uptake and Biodistribution of Polymeric Nanoparticles
,”
Biomaterials
,
31
(
13
), pp.
3657
3666
.
8.
Chithrani
,
B. D.
,
Ghazani
,
A. A.
, and
Chan
,
W. C. W.
,
2006
, “
Determining the Size and Shape Dependence of Gold Nanoparticle Uptake Into Mammalian Cells
,”
Nano Lett.
,
6
(
4
), pp.
662
668
.
9.
Lu
,
F.
,
Wu
,
S.-H.
,
Hung
,
Y.
, and
Mou
,
C.-Y.
,
2009
, “
Size Effect on Cell Uptake in Well-Suspended, Uniform Mesoporous Silica Nanoparticles
,”
Small
,
5
(
12
), pp.
1408
1413
.
10.
Osaki
,
F.
,
Kanamori
,
T.
,
Sando
,
S.
,
Sera
,
T.
, and
Aoyama
,
Y.
,
2004
, “
A Quantum Dot Conjugated Sugar Ball and Its Cellular Uptake. On the Size Effects of Endocytosis in the Subviral Region
,”
J. Am. Chem. Soc.
,
126
(
21
), pp.
6520
6521
.
11.
Cunningham
,
K.
, and
Gotlieb
,
A.
,
2005
, “
The Role of Shear Stress in the Pathogenesis of Atherosclerosis
,”
Lab. Invest.
,
85
, pp.
9
23
.
12.
Davies
,
P.
,
2008
, “
Hemodynamic Shear Stress and the Endothelium in Cardiovascular Pathophysiology
,”
Nat. Clin. Pract. Cardiovasc. Med.
,
6
(
1
), pp. 16–26.
13.
Slager
,
C.
, and
Wentzel
,
J.
,
2005
, “
The Role of Shear Stress in the Generation of Rupture-Prone Vulnerable Plaques
,”
Nat. Clin. Pract. Cardiovasc. Med.
,
2
, pp.
401
407
.
14.
Howard
,
M.
,
Zern
,
B. J.
,
Anselmo
,
A. C.
,
Shuvaev
,
V. V.
,
Mitragotri
,
S.
,
Muzykantov
,
V.
, and
Al
,
H. E. T.
,
2015
, “
Vascular Targeting of Nanocarriers: Perplexing Aspects of the Seemingly Straightforward Paradigm
,”
ACS Nano
,
8
(
5
), pp.
4100
4132
.
15.
Howard
,
M. D.
,
Hood
,
E. D.
,
Zern
,
B.
,
Shuvaev
,
V. V.
,
Grosser
,
T.
, and
Muzykantov
,
V. R.
,
2014
, “
Nanocarriers for Vascular Delivery of Anti-Inflammatory Agents
,”
Annu. Rev. Pharmacol. Toxicol.
,
54
(
1
), pp.
205
226
.
16.
Calderon
,
A. J.
,
Muzykantov
,
V.
,
Muro
,
S.
, and
Eckmann
,
D. M.
,
2010
, “
Flow Dynamics, Binding and Detachment of Spherical Carriers Targeted to ICAM-1 on Endothelial Cells
,”
Biorheology
,
46
(
4
), pp.
323
341
.
17.
Gentile
,
F.
,
Curcio
,
A.
,
Indolfi
,
C.
,
Ferrari
,
M.
, and
Decuzzi
,
P.
,
2008
, “
The Margination Propensity of Spherical Particles for Vascular Targeting in the Microcirculation
,”
J. Nanobiotechnol.
,
6
(
1
), p.
9
.
18.
Lee
,
S.-Y.
,
Ferrari
,
M.
, and
Decuzzi
,
P.
,
2009
, “
Shaping Nano-/Micro-Particles for Enhanced Vascular Interaction in Laminar Flows
,”
Nanotechnology
,
20
(
49
), p.
495101
.
19.
Toy
,
R.
,
Hayden
,
E.
,
Shoup
,
C.
,
Baskaran
,
H.
, and
Karathanasis
,
E.
,
2011
, “
The Effects of Particle Size, Density and Shape on Margination of Nanoparticles in Microcirculation
,”
Nanotechnology
,
22
(
11
), p.
115101
.
20.
Jurney
,
P.
,
Agarwal
,
R.
,
Singh
,
V.
,
Roy
,
K.
,
Sreenivasan
,
S. V.
, and
Shi
,
L.
,
2013
, “
Size-Dependent Nanoparticle Margination and Adhesion Propensity in a Microchannel
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
3
), p.
031002
.
21.
Kona
,
S.
,
Dong
,
J.-F.
,
Liu
,
Y.
,
Tan
,
J.
, and
Nguyen
,
K. T.
,
2012
, “
Biodegradable Nanoparticles Mimicking Platelet Binding as a Targeted and Controlled Drug Delivery System
,”
Int. J. Pharm.
,
423
(
2
), pp.
516
524
.
22.
Samuel
,
S. P.
,
Jain
,
N.
,
Dowd
,
F. O.
,
Paul
,
T.
,
Gerard
,
V. A.
,
Gun
,
Y. K.
, and
Prina-mello
,
A.
,
2012
, “
Multifactorial Determinants That Govern Nanoparticle Uptake by Human Endothelial Cells Under Flow
,”
Int. J. Nanomed.
,
7
, pp.
2943
2956
.
23.
Charoenphol
,
P.
,
Huang
,
R. B.
, and
Eniola-Adefeso
,
O.
,
2010
, “
Potential Role of Size and Hemodynamics in the Efficacy of Vascular-Targeted Spherical Drug Carriers
,”
Biomaterials
,
31
(
6
), pp.
1392
1402
.
24.
Agarwal
,
R.
,
Singh
,
V.
,
Jurney
,
P.
,
Shi
,
L.
,
Sreenivasan
,
S. V.
, and
Roy
,
K.
,
2013
, “
Mammalian Cells Preferentially Internalize Hydrogel Nanodiscs Over Nanorods and Use Shape-Specific Uptake Mechanisms
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
43
), pp.
17247
17252
.
25.
Papaioannou
,
T. G.
, and
Stefanadis
,
C.
, “
Vascular Wall Shear Stress: Basic Principles and Methods
,”
Hell. J. Cardiol.
,
46
(
1
), pp.
9
15
.
26.
Barrett
,
K.
,
Brooks
,
H.
,
Boitano
,
S.
, and
Barman
,
S.
,
2010
,
Ganong's Review of Medical Physiology
, 24th ed., McGraw-Hill Education, New York.
27.
He
,
C.
,
Hu
,
Y.
,
Yin
,
L.
,
Tang
,
C.
, and
Yin
,
C.
,
2010
, “
Effects of Particle Size and Surface Charge on Cellular Uptake and Biodistribution of Polymeric Nanoparticles
,”
Biomaterials
,
31
(
13
), pp.
3657
3666
.
28.
Gyenge
,
E. B.
,
Darphin
,
X.
,
Wirth
,
A.
,
Pieles
,
U.
,
Walt
,
H.
,
Bredell
,
M.
, and
Maake
,
C.
,
2011
, “
Uptake and Fate of Surface Modified Silica Nanoparticles in Head and Neck Squamous Cell Carcinoma
,”
J. Nanobiotechnol.
,
9
(
1
), p.
32
.
29.
Summers
,
H. D.
,
Rees
,
P.
,
Holton
,
M. D.
,
Brown
,
M. R.
,
Chappell
,
S. C.
,
Smith
,
P. J.
, and
Errington
,
R. J.
,
2011
, “
Statistical Analysis of Nanoparticle Dosing in a Dynamic Cellular System
,”
Nat. Nanotechnol.
,
6
(
3
), pp.
170
174
.
30.
Pavlin
,
M.
,
Lojk
,
J.
,
Bregar
,
V. B.
,
Rajh
,
M.
,
Mis
,
K.
,
Kreft
,
M. E.
,
Pirkmajer
,
S.
, and
Veranic
,
P.
,
2015
, “
Cell Type-Specific Response to High Intracellular Loading of Polyacrylic Acid-Coated Magnetic Nanoparticles
,”
Int. J. Nanomed.
,
10
, p.
1449
.
31.
Cho
,
E. C.
,
Zhang
,
Q.
, and
Xia
,
Y.
,
2011
, “
The Effect of Sedimentation and Diffusion on Cellular Uptake of Gold Nanoparticles
,”
Nat. Nanotechnol.
,
6
(
6
), pp.
385
391
.
32.
Mody
,
N. A.
, and
King
,
M. R.
,
2007
, “
Influence of Brownian Motion on Blood Platelet Flow Behavior and Adhesive Dynamics Near a Planar Wall
,”
Langmuir
,
23
(
1
), pp.
6321
6328
.
33.
Lesniak
,
A.
,
Fenaroli
,
F.
,
Monopoli
,
M. P.
,
Åberg
,
C.
,
Dawson
,
K. A.
, and
Salvati
,
A.
,
2012
, “
Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells
,”
ACS Nano
,
6
(
7
), pp.
5845
5857
.
34.
Lesniak
,
A.
,
Salvati
,
A.
,
Santos-Martinez
,
M. J.
,
Radomski
,
M. W.
,
Dawson
,
K. A.
, and
Åberg
,
C.
,
2013
, “
Nanoparticle Adhesion to the Cell Membrane and Its Effect on Nanoparticle Uptake Efficiency
,”
J. Am. Chem. Soc.
,
135
(
4
), pp.
1438
1444
.
35.
Monopoli
,
M. P.
,
Aberg
,
C.
,
Salvati
,
A.
, and
Dawson
,
K. A.
,
2012
, “
Biomolecular Coronas Provide the Biological Identity of Nanosized Materials
,”
Nat. Nanotechnol.
,
7
(
12
), pp.
779
786
.
36.
Yan
,
Y.
,
Gause
,
K. T.
,
Kamphuis
,
M. M. J.
,
Ang
,
C. S.
,
O'Brien-Simpson
,
N. M.
,
Lenzo
,
J. C.
,
Reynolds
,
E. C.
,
Nice
,
E. C.
, and
Caruso
,
F.
,
2013
, “
Differential Roles of the Protein Corona in the Cellular Uptake of Nanoporous Polymer Particles by Monocyte and Macrophage Cell Lines
,”
ACS Nano
,
7
(
12
), pp.
10960
10970
.
37.
Lunov
,
O.
,
Syrovets
,
T.
,
Loos
,
C.
,
Beil
,
J.
,
Delacher
,
M.
,
Tron
,
K.
,
Nienhaus
,
G. U.
,
Musyanovych
,
A.
,
Mailänder
,
V.
,
Landfester
,
K.
, and
Simmet
,
T.
,
2011
, “
Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line
,”
ACS Nano
,
5
(
3
), pp.
1657
1669
.
38.
Shang
,
L.
,
Nienhaus
,
K.
, and
Nienhaus
,
G. U.
,
2014
, “
Engineered Nanoparticles Interacting With Cells: Size Matters
,”
J. Nanobiotechnol.
,
12
(
1
), p.
5
.
You do not currently have access to this content.