Thin glass-fiber/epoxy-composite sheets filled with multiwalled carbon nanotubes (MWCNTs) are manufactured to make lightweight honeycomb sandwich microwave absorbers. A multilayered sandwich structure of thin nanocomposite sheets and honeycomb spacers have been also proposed and developed to work in a wide frequency range. The nanocomposite sheets are prepared from 0.5, 1.0, 1.5, 2.0, and 2.5 wt. % of MWCNTs. A commercially available simulation software computer simulation technology (CST) microwave studio was used for the designing and development of radar absorbing structure (RAS) composed of MWCNTs/glass-fiber/epoxy-composite sheets and honeycomb cores. The measurements of return loss (RL) from sandwich structures with 5 mm and 20 mm honeycomb cores in the Ku band (11–17 GHz) show that maximum RL is achieved at 11 GHz and 16 GHz, respectively. The stacking of three nanocomposite sheets and three 5 mm-thick honeycomb spacers produced a wide band microwave absorber with −10 dB RL over 9 GHz bandwidth.

References

References
1.
Qin
,
F.
, and
Brosseau
,
C.
,
2012
, “
A Review and Analysis of Microwave Absorption in Polymer Composites Filled With Carbonaceous Particles
,”
J. Appl. Phys.
,
111
(
6
), p.
061301
.
2.
Kim
,
P. C.
, and
Lee
,
D. G.
,
2009
, “
Composite Sandwich Constructions for Absorbing the Electromagnetic Waves
,”
Compos. Struct.
,
87
(
2
), pp.
161
167
.
3.
Oh
,
J.
,
Oh
,
K.
,
Kim
,
C.
, and
Hong
,
C.
,
2004
, “
Design of Radar Absorbing Structures Using Glass/Epoxy Composite Containing Carbon Black in X-B and Frequency Ranges
,”
Compos. Part B: Eng.
,
35
(
1
), pp.
49
56
.
4.
He
,
Y.
,
Gong
,
R.
,
Li
,
X.
,
Wang
,
X.
, and
Hu
,
Q.
,
2007
, “
Design, Fabrication and Characteristic of Two-Layer Microwave Absorbers Composed of Magnetic Micropowder-Rubber Composites in X-Band Frequency Range
,”
Europhys. Lett.
,
77
(
6
).
5.
Chin
,
W. S.
, and
Lee
,
D. G.
,
2007
, “
Development of the Composite RAS (Radar Absorbing Structure) for the X-Band Frequency Range
,”
Compos. Struct.
,
77
(
4
), pp.
457
465
.
6.
Neo
,
C. P.
, and
Varadan
,
V. K.
,
2007
, “
Design and Development of Electromagnetic Absorbers With Carbon Fiber Composites and Matching Dielectric Layers
,”
Smart Mater. Struct.
,
10
(
5
), pp.
1107
1110
.
7.
Kouong
,
J. R. N. G.
,
Kim
,
M.
,
Park
,
H. W.
,
Park
,
Y. B.
,
Jeong
,
H.
,
Jung
,
Y. B.
,
Ahn
,
S. K.
,
Han
,
K.
, and
Park
,
J.
,
2013
, “
Electromagnetic Interference Shielding of Composites Consisting of a Polyester Matrix and Carbon Nanotube-Coated Fiber Reinforcement
,”
Compos. Part A: Appl. Sci. Manuf.
,
50
, pp.
73
80
.
8.
Lee
,
S.
,
Kang
,
J.
, and
Kim
,
C.
,
2006
, “
Fabrication and Design of Multi-Layered Radar Absorbing Structures of MWNT-Filled Glass/Epoxy Plain-Weave Composites
,”
Compos. Struct.
,
76
(
4
), pp.
397
405
.
9.
Jung
,
W.
,
Kim
,
B.
,
Won
,
M.
, and
Ahn
,
S.
,
2006
, “
Fabrication of Radar Absorbing Structure (RAS) Using GFR-Nano Composite and Spring-Back Compensation of Hybrid Composite RAS Shells
,”
Compos. Struct.
,
75
(
1–4
), pp.
571
576
.
10.
Micheli
,
D.
,
Apollo
,
C.
,
Pastore
,
R.
,
Barbera
,
D.
,
Morles
,
R. B.
, and
Marchetti
,
M.
,
2012
, “
Optimization of Multilayer Shields Made of Composite Nanostructured Materials
,”
IEEE Trans. Electromagn. Compat.
,
54
(
1
), pp.
60
69
.
11.
Park
,
K.
,
Han
,
J.
,
Kim
,
J.
, and
Lee
,
S.
,
2011
, “
Two-Layered Electromagnetic Wave-Absorbing E-Glass/Epoxy Plain Weave Composites Containing Carbon Nanofibers and NiFe Particles
,”
J. Compos. Mater.
,
45
(
26
), pp.
2773
2781
.
12.
Micheli
,
D.
,
Apollo
,
C.
,
Pastore
,
R.
, and
Marchetti
,
M.
,
2010
, “
X-Band Microwave Characterization of Carbon-Based Nanocomposite Material, Absorption Capability Comparison and RAS Design Simulation
,”
Compos. Sci. Technol.
,
70
(
2
), pp.
400
409
.
13.
Kim
,
J.
,
Lee
,
S.
, and
Kim
,
C.
,
2008
, “
Comparison Study on the Effect of Carbon Nano Materials for Single-Layer Microwave Absorbers in X-Band
,”
Compos. Sci. Technol.
,
68
(
14
), pp.
2909
2916
.
14.
Kim
,
J.
, and
Byun
,
J.
,
2012
, “
Salisbury Screen Absorbers of Dielectric Lossy Sheets of Carbon Nanocomposite Laminates
,”
IEEE Trans. Electromagn. Compat.
,
54
(
1
), pp.
37
42
.
15.
Choi
,
I.
,
Kim
,
J.
,
Lee
,
D.
, and
Seo
,
I. S.
,
2011
, “
Aramid/Epoxy Composites Sandwich Structures for Low-Observable Radomes
,”
Compos. Sci. Technol.
,
71
(
14
), pp.
1632
1638
.
16.
Rosa
,
I. M.
,
Sarasini
,
F.
,
Sarto
,
M. S.
, and
Tamburrano
,
A.
,
2008
, “
EMC Impact of Advanced Carbon Fiber/Carbon Nanotube Reinforced Composites for Next-Generation Aerospace Applications
,”
IEEE Trans. Electromagn. Compat.
,
50
(
3
), pp.
556
563
.
17.
Park
,
K.
,
Lee
,
S.
,
Kim
,
C.
, and
Han
,
J.
,
2006
, “
Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures
,”
Compos. Sci. Technol.
,
66
(
3–4
), pp.
576
584
.
18.
Saville
,
P.
,
2005
, Review of Radar Absorbing Materials, Defence Research and Development Canada, Ottawa, Canada.
19.
Singh
,
P.
,
Babbar
,
V. K.
,
Razdan
,
A.
,
Puri
,
R. K.
, and
Goel
,
T. C.
,
2000
, “
Complex Permittivity, Permeability, and X-Band Microwave Absorption of CaCoTi Ferrite Composites
,”
J. Appl. Phys.
,
87
(
9
), p. 4362.
20.
Liu
,
J. R.
,
Itoh
,
M.
, and
Machida
,
K.
, “
Electromagnetic Wave Absorption Properties of Fe/Fe3B/Y2O3 Nanocomposites in Gigahhertz Range
,”
Appl. Phys. Lett.
,
83
(
19
), p. 4017.
You do not currently have access to this content.