We report a facile fabrication of a high-performance supercapacitor (SC) using a flexible cellulose-based composite film of polyaniline (PANI), reduced graphene oxide (RGO), and silver nanowires (AgNWs). The flexibility, high capacitive behavior, cyclic stability, and enhanced rate capability of the entire device make it a good candidate for flexible and wearable SCs. Our results demonstrate that a capacitance as high as 73.4 F/g (1.6 F/cm2) at a discharge rate of 1.1 A/g is achieved. In addition, the SC shows a power density up to 468.8 W/kg and an energy density up to 5.1 Wh/kg. The flexibility of the composite film is owing to the binding effect of cellulose fibers as well as AgNWs. The superb electrochemical performance of the device is found to be mainly attributed to the synergistic effect between PANI/RGO/AgNWs ternary in a cushiony cellulose scaffold and porous structure of the composite.

References

1.
Winter
,
M.
, and
Brodd
,
R. J.
,
2004
, “
What Are Batteries, Fuel Cells, and Supercapacitors?
,”
Chem. Rev.
,
104
(
10
), pp.
4245
4270
.
2.
Zhang
,
L. L.
,
Zhou
,
R.
, and
Zhao
,
X. S.
,
2010
, “
Graphene-Based Materials as Supercapacitor Electrodes
,”
J. Mater. Chem.
,
20
(
29
), pp.
5983
5992
.
3.
Wang
,
G.
,
Zhang
,
L.
, and
Zhang
,
J.
,
2012
, “
A Review of Electrode Materials for Electrochemical Supercapacitors
,”
Chem. Soc. Rev.
,
41
(
2
), pp.
797
828
.
4.
Snook
,
G. A.
,
Kao
,
P.
, and
Best
,
A. S.
,
2011
, “
Conducting-Polymer-Based Supercapacitor Devices and Electrodes
,”
J. Power Sources
,
196
(
1
), pp.
1
12
.
5.
Zhang
,
L. L.
, and
Zhao
,
X. S.
,
2009
, “
Carbon-Based Materials as Supercapacitor Electrodes
,”
Chem. Soc. Rev.
,
38
(
9
), pp.
2520
2531
.
6.
Jang
,
J.
,
Bae
,
J.
,
Choi
,
M.
, and
Yoon
,
S.-H.
,
2005
, “
Fabrication and Characterization of Polyaniline Coated Carbon Nanofiber for Supercapacitor
,”
Carbon
,
43
(
13
), pp.
2730
2736
.
7.
Wang
,
Y. G.
,
Li
,
H. Q.
, and
Xia
,
Y. Y.
,
2006
, “
Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance
,”
Adv. Mater.
,
18
(
19
), pp.
2619
2623
.
8.
Yan
,
J.
,
Wei
,
T.
,
Shao
,
B.
,
Fan
,
Z.
,
Qian
,
W.
,
Zhang
,
M.
, and
Wei
,
F.
,
2010
, “
Preparation of a Graphene Nanosheet/Polyaniline Composite With High Specific Capacitance
,”
Carbon
,
48
(
2
), pp.
487
493
.
9.
Wu
,
Q.
,
Xu
,
Y.
,
Yao
,
Z.
,
Liu
,
A.
, and
Shi
,
G.
,
2010
, “
Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films
,”
ACS Nano
,
4
(
4
), pp.
1963
1970
.
10.
Wang
,
H.
,
Hao
,
Q.
,
Yang
,
X.
,
Lu
,
L.
, and
Wang
,
X.
,
2010
, “
A Nanostructured Graphene/Polyaniline Hybrid Material for Supercapacitors
,”
Nanoscale
,
2
(
10
), pp.
2164
2170
.
11.
Xu
,
J.
,
Wang
,
K.
,
Zu
,
S.-Z.
,
Han
,
B.-H.
, and
Wei
,
Z.
,
2010
, “
Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets With Synergistic Effect for Energy Storage
,”
ACS Nano
,
4
(
9
), pp.
5019
5026
.
12.
Mao
,
L.
,
Zhang
,
K.
,
On Chan
,
H. S.
, and
Wu
,
J.
,
2012
, “
Surfactant-Stabilized Graphene/Polyaniline Nanofiber Composites for High Performance Supercapacitor Electrode
,”
J. Mater. Chem.
,
22
(
1
), pp.
80
85
.
13.
Meng
,
Y.
,
Wang
,
K.
,
Zhang
,
Y.
, and
Wei
,
Z.
,
2013
, “
Hierarchical Porous Graphene/Polyaniline Composite Film With Superior Rate Performance for Flexible Supercapacitors
,”
Adv. Mater.
,
25
(
48
), pp.
6985
6990
.
14.
Yu
,
P.
,
Zhao
,
X.
,
Huang
,
Z.
,
Li
,
Y.
, and
Zhang
,
Q.
,
2014
, “
Free-Standing Three-Dimensional Graphene and Polyaniline Nanowire Arrays Hybrid Foams for High-Performance Flexible and Lightweight Supercapacitors
,”
J. Mater. Chem. A
,
2
(
35
), pp.
14413
14420
.
15.
Liu
,
X.
,
Shang
,
P.
,
Zhang
,
Y.
,
Wang
,
X.
,
Fan
,
Z.
,
Wang
,
B.
, and
Zheng
,
Y.
,
2014
, “
Three-Dimensional and Stable Polyaniline-Grafted Graphene Hybrid Materials for Supercapacitor Electrodes
,”
J. Mater. Chem. A
,
2
(
37
), pp.
15273
15278
.
16.
Chen
,
J.
,
Bi
,
H.
,
Sun
,
S.
,
Tang
,
Y.
,
Zhao
,
W.
,
Lin
,
T.
,
Wan
,
D.
,
Huang
,
F.
,
Zhou
,
X.
,
Xie
,
X.
, and
Jiang
,
M.
,
2013
, “
Highly Conductive and Flexible Paper of 1D Silver-Nanowire-Doped Graphene
,”
ACS Appl. Mater. Interfaces
,
5
(
4
), pp.
1408
1413
.
17.
Liu
,
S.
,
Weng
,
B.
,
Tang
,
Z.-R.
, and
Xu
,
Y.-J.
,
2015
, “
Constructing One-Dimensional Silver Nanowire-Doped Reduced Graphene Oxide Integrated With CdS Nanowire Network Hybrid Structures Toward Artificial Photosynthesis
,”
Nanoscale
,
7
(
3
), pp.
861
866
.
18.
Zhang
,
W. C.
,
Wu
,
X. L.
,
Chen
,
H. T.
,
Gao
,
Y. J.
,
Zhu
,
J.
,
Huang
,
G. S.
, and
Chu
,
P. K.
,
2008
, “
Self-Organized Formation of Silver Nanowires, Nanocubes and Bipyramids Via a Solvothermal Method
,”
Acta Mater.
,
56
(
11
), pp.
2508
2513
.
19.
Roy
,
D.
,
Semsarilar
,
M.
,
Guthrie
,
J. T.
, and
Perrier
,
S.
,
2009
, “
Cellulose Modification by Polymer Grafting: A Review
,”
Chem. Soc. Rev.
,
38
(
7
), pp.
2046
2064
.
20.
Miao
,
C.
, and
Hamad
,
W.
,
2013
, “
Cellulose Reinforced Polymer Composites and Nanocomposites: A Critical Review
,”
Cellulose
,
20
(
5
), pp.
2221
2262
.
21.
Zhang
,
X.
,
Lin
,
Z.
,
Chen
,
B.
,
Zhang
,
W.
,
Sharma
,
S.
,
Gu
,
W.
, and
Deng
,
Y.
,
2014
, “
Solid-State Flexible Polyaniline/Silver Cellulose Nanofibrils Aerogel Supercapacitors
,”
J. Power Sources
,
246
, pp.
283
289
.
22.
Shi
,
X.
,
Hu
,
Y.
,
Li
,
M.
,
Duan
,
Y.
,
Wang
,
Y.
,
Chen
,
L.
, and
Zhang
,
L.
,
2014
, “
Highly Specific Capacitance Materials Constructed Via In Situ Synthesis of Polyaniline in a Cellulose Matrix for Supercapacitors
,”
Cellulose
,
21
(
4
), pp.
2337
2347
.
23.
Khosrozadeh
,
A.
,
Xing
,
M.
, and
Wang
,
Q.
,
2015
, “
A High-Capacitance Solid-State Supercapacitor Based on Free-Standing Film of Polyaniline and Carbon Particles
,”
Appl. Energy
,
153
, pp.
87
93
.
You do not currently have access to this content.