Magnetic drug targeting (MDT) involves the localization of drug loaded iron oxide nanoparticles (IONPs) around the malignant tissue using external magnetic field for therapeutic purposes. The present in vitro study reports the visualization and motion of curcumin loaded IONPs (CU-IONPs) around the target site inside a microcapillary (500 × 500 μm2 square cross section), in the presence of an externally applied magnetic field. Application of magnetic field leads to transportation and aggregation of CU-IONPs toward the target site inside the capillary adjacent to the magnet. The localization/aggregation of CU-IONPs at the target site shows strong dependence on the strength of the applied magnetic field and flow rate of ferrofluid through the capillary. Such an in vitro study offers a viable for optimization and design of MDT systems for in vivo applications.

References

1.
Ahmed
,
N.
,
Fessi
,
H.
, and
Elaissari
,
A.
,
2012
, “
Theranostic Applications of Nanoparticles in Cancer
,”
Drug Discovery Today
,
17
(
17–18
), pp.
928
934
.
2.
Etgar
,
L.
,
Nakhmani
,
A.
,
Tannenbaum
,
A.
,
Lifshitz
,
E.
, and
Tannenbaum
,
R.
,
2010
, “
Trajectory Control of PbSe-Gamma-Fe2O3 Nanoplatforms Under Viscous Flow and an External Magnetic Field
,”
Nanotechnology
,
21
(
17
), p.
175702
.
3.
Lim
,
J.
,
Lanni
,
C.
,
Evarts
,
E. R.
,
Lanni
,
F.
,
Tilton
,
R. D.
, and
Majetich
,
S. A.
,
2011
, “
Magnetophoresis of Nanoparticles
,”
ACS Nano
,
5
(
1
), pp.
217
226
.
4.
Widder
,
K. J.
,
Morris
,
R. M.
,
Poore
,
G.
,
Howard
,
D. P.
, Jr.
, and
Senyei
,
A. E.
,
1981
, “
Tumor Remission in Yoshida Sarcoma-Bearing Rats by Selective Targeting of Magnetic Albumin Microspheres Containing Doxorubicin
,”
Proc. Natl. Acad. Sci. U. S. A.
,
78
(
1
), pp.
579
581
.
5.
Goodwin
,
S.
,
Peterson
,
C.
,
Hoh
,
C.
, and
Bittner
,
C.
,
1999
, “
Targeting and Retention of Magnetic Targeted Carriers (MTCs) Enhancing Intra-Arterial Chemotherapy
,”
J. Magn. Magn. Mater.
,
194
(
1
), pp.
132
139
.
6.
Voltairas
,
P. A.
,
Fotiadis
,
D. I.
, and
Michalis
,
L. K.
,
2002
, “
Hydrodynamics of Magnetic Drug Targeting
,”
J. Biomech.
,
35
(
6
), pp.
813
821
.
7.
Grief
,
A. D.
, and
Richardson
,
G.
,
2005
, “
Mathematical Modelling of Magnetically Targeted Drug Delivery
,”
J. Magn. Magn. Mater.
,
293
(
1
), pp.
455
463
.
8.
Jurgons
,
R.
,
Seliger
,
C.
,
Hilpert
,
A.
,
Trahms
,
L.
,
Odenbach
,
S.
, and
Alexiou
,
C.
,
2006
, “
Drug Loaded Magnetic Nanoparticles for Cancer Therapy
,”
J. Phys.: Condens. Matter
,
18
(
38
), pp.
S2893
S2902
.
9.
Furlani
,
E. P.
, and
Ng
,
K. C.
,
2006
, “
Analytical Model of Magnetic Nanoparticle Transport and Capture in the Microvasculature
,”
Phys. Rev. E
,
73
(
6
), p.
061919
.
10.
Shaw
,
S.
,
Murthy
,
P. V. S. N.
, and
Pradhan
,
S. C.
,
2010
, “
Effect of Non-Newtonian Characteristics of Blood on Magnetic Targeting in the Impermeable Micro-Vessel
,”
J. Magn. Magn. Mater.
,
322
(
8
), pp.
1037
1043
.
11.
Furlani
,
E. J.
, and
Furlani
,
E. P.
,
2007
, “
A Model for Predicting Magnetic Targeting of Multifunctional Particles in the Microvasculature
,”
J. Magn. Magn. Mater.
,
312
(
1
), pp.
187
193
.
12.
Yang
,
J.
,
Park
,
J.
,
Lee
,
J.
,
Cha
,
B.
,
Song
,
Y.
,
Yoon
,
H. G.
,
Huh
,
Y. M.
, and
Haam
,
S.
,
2007
, “
Motions of Magnetic Nanosphere Under the Magnetic Field in the Rectangular Microchannel
,”
J. Magn. Magn. Mater.
,
317
(
1–2
), pp.
34
40
.
13.
Anwar
,
M.
,
Asfer
,
M.
,
Prajapati
,
A. P.
,
Mohapatra
,
S.
,
Akhter
,
S.
,
Ali
,
A.
, and
Ahmad
,
F. J.
,
2014
, “
Synthesis and In Vitro Localization Study of Curcumin-Loaded SPIONs in a Micro Capillary for Simulating a Targeted Drug Delivery System
,”
Int. J. Pharm.
,
468
(
1–2
), pp.
158
164
.
14.
Magnetic Drug Targeting in Cancer Therapy, http://www.comsol.com/
15.
Mendelev
,
V. S.
, and
Ivanov
,
A. O.
,
2004
, “
Ferrofluid Aggregation in Chains Under the Influence of a Magnetic Field
,”
Phys. Rev. E
,
70
(
5
), p.
051502
.
16.
Kays
,
W.
, and
Crawford
,
M.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill, Inc.
,
New York
.
17.
Walsh
,
P. A.
,
Egan
,
V. M.
, and
Walsh
,
E. J.
,
2010
, “
Novel Micro-PIV Study Enables a Greater Understanding of Nanoparticle Suspension Flows: Nanofluids
,”
Microfluid. Nanofluid.
,
8
(
6
), pp.
837
842
.
18.
Zhu
,
T.
,
Lichlyter
,
D. J.
,
Haidekker
,
M. A.
, and
Mao
,
L.
,
2011
, “
Analytical Model of Microfluidic Transport of Non-Magnetic Particles in Ferrofluids Under the Influence of a Permanent Magnet
,”
Microfluid. Nanofluid.
,
10
(
6
), pp.
1233
1245
.
You do not currently have access to this content.