Two different preparations of biocompatible magnetic nanoparticles (MNPs), both (MnFe2O4 and Mn0.91Zn0.09Fe2O4) coated with methoxy polyethylene glycol aldehyde (m-PEG-CHO) were prepared through coprecipitation method. The prepared powder was reanalyzed for material structure with an X-ray diffractometer (XRD) and for particle size using a transition electron microscope (TEM). Magnetic saturation (MS) and coercivity (HC) of the formed particles were examined by a vibrating sample magnetometer (VSM). Surface structure of the samples was characterized by Fourier transform infrared spectroscopy (FTIR). Biocompatible ferrofluids were intravenously injected into four rabbits. Then the magnetic resonance (MR) images of brain were obtained by magnetic resonance imaging (MRI) experiments before and after intravenous injection of ferrofluids. The MNPs demonstrate super paramagnetic behavior with a spinel structure measuring 30–40 nm in size. Doping of these magnetite nanoparticles with zinc resulted in decreases in crystallite size from 24.23 nm to 21.15 nm, the lattice parameter from 8.45 Å to 8.43 Å and the coercivity from 41.20 Oe to 13.07 Oe. On the other hand, saturation magnetization increased from 50.12 emu/g to 57.36 emu/g following zinc doping. Image exposure analysis revealed that the reduction of MR signal intensity for zinc-doped magnetite nanoparticles was more than nondoped nanoparticles (shorter T2 relaxation time) thereby making the images darker.

References

References
1.
Ghazanfar
,
U.
,
Siddiqi
,
S. A.
, and
Abbas
,
G.
,
2005
, “
Study of Room Temperature DC Resistivity in Comparison With Activation Energy and Drift Mobility of NiZn Ferrites
,”
Mater. Sci. Eng.: B
,
118
(
1–3
), pp.
132
134
.10.1016/j.mseb.2004.12.086
2.
Snoek
,
J. L.
,
1947
,
New Developments in Ferromagnetic Materials
,
Elsevier, New York
.
3.
Sugimoto
,
M.
,
1999
, “
The Past, Present, and Future of Ferrites
,”
J. Am. Ceram. Soc.
,
82
(
2
), pp.
269
280
.10.1111/j.1551-2916.1999.tb20058.x
4.
Hu
,
P.
,
Yang
,
H.
,
Pan
,
D.
,
Wang
,
H.
,
Tian
,
J.
,
Zhang
,
S.
,
Wang
,
X.
, and
Volinsky
,
A. A.
,
2010
, “
Heat Treatment Effects on Microstructure and Magnetic Properties of Mn–Zn Ferrite Powders
,”
J Magn. Magn. Mater.
,
322
(
1
), pp.
173
177
.10.1016/j.jmmm.2009.09.002
5.
Parveen
,
S.
,
Misra
,
R.
, and
Sahoo
,
S. K.
,
2012
, “
Nanoparticles: A Boon to Drug Delivery, Therapeutics, Diagnostics and Imaging
,”
Nanomed.: Nanotechnol., Biol., Med.
,
8
(
2
), pp.
147
166
.10.1016/j.nano.2011.05.016
6.
Neel
,
L.
,
1948
, “
Magnetic Properties of Femtes: Ferrimagnetism and Antiferromagnetism
,”
Ann. Phys. Paris
,
3
, pp.
137
198
.
7.
Waqas
,
H.
, and
Qureshi
,
A. H.
,
2009
, “
Influence of pH on Nanosized Mn–Zn Ferrite Synthesized by Sol–Gel Auto Combustion Process
,”
J. Therm. Anal. Calorim.
,
98
(
2
), pp.
355
360
.10.1007/s10973-009-0289-8
8.
Rao
,
A. D. P.
,
Ramesh
,
B.
,
Rao
,
P. R. M.
, and
Raju
,
S. B.
,
1999
, “
Magnetic and Microstructural Properties of Sn/Nb Substituted Mn–Zn Ferrites
,”
J. Alloys Compd.
,
282
(
1
), pp.
268
273
.10.1016/S0925-8388(98)00823-8
9.
Wang
,
J.
,
Su
,
M. Y.
,
Qi
,
J. Q.
, and
Chang
,
L. Q.
,
2009
, “
Sensitivity and Complex Impedance of Nanometer Zirconia Thick Film Humidity Sensors
,”
Sens. Actuators B
,
139
(
2
), pp.
418
424
.10.1016/j.snb.2009.03.070
10.
Chang
,
L. Q.
,
Liu
,
C.
,
He
,
Y.
,
Xiao
,
H.
, and
Cai
,
X.
,
2011
, “
Small-Volume Solution Current-Time Behavior Study for Application in Reverse Iontophoresis-Based Non-Invasive Blood Glucose Monitoring
,”
Sci. China-Chem.
,
54
(
1
), pp.
223
230
.10.1007/s11426-010-4130-9
11.
Humaira
,
A.
, and
Asghari
,
M.
,
2010
, “
Temperature Dependent Structural and Electrical Analysis of Mn–Zn Nano Ferrites
,”
J. Pak. Mat. Soc.
,
4
(
2
), pp.
81
94
.
12.
Kondo
,
A.
, and
Fukuda
,
H.
,
1997
, “
Preparation of Thermo-Sensitive Magnetic Hydrogel Microspheres and Application to Enzyme Immobilization
,”
J. Ferment. Bioeng.
,
84
(
4
), pp.
337
341
.10.1016/S0922-338X(97)89255-0
13.
Šepelák
,
V.
,
Heitjans
,
P.
, and
Becker
,
K. D.
,
2007
, “
Nanoscale Spinel Ferrites Prepared by Mechanochemical Route
,”
J. Therm. Anal. Calorim.
,
90
(
1
), pp.
93
97
.
14.
Thomsen
,
H. S.
,
Morcos
,
S. K.
, and
Dawson
,
P.
,
2006
, “
Is There a Causal Relation Between the Administration of Gadolinium Based Contrast Media and the Development of Nephrogenic Systemic Fibrosis (NSF)?
,”
Clin. Radiol.
,
61
(
11
), pp.
905
906
.10.1016/j.crad.2006.09.003
15.
Elgavish
,
G. A.
,
Brown
,
R. D.
,
Miller
,
S. K.
,
Spiller
,
M.
,
Koenig
,
S. H.
, and
Pohost
,
G. M.
,
1987
, “
A New Category of High-Relaxivity Contrast Agents Enables Nmr Imaging of Infarcted Myocardium at Low Agent Dosage
,”
Circulation
,
76
(
4
), pp.
159
159
.
16.
Bonnemain
,
B.
,
1998
, “
Superparamagnetic Agents in Magnetic Resonance Imaging: Physicochemical Characteristics and Clinical Applications—A Review
,”
J. Drug Target
,
6
(
3
), pp.
167
174
.10.3109/10611869808997890
17.
Hofmann-Amtenbrink
,
M.
,
Hofmann
,
H.
, and
Montet
,
X.
,
2010
, “
Superparamagnetic Nanoparticles—A Tool for Early Diagnostics
,”
Swiss Med. Wkly.
,
140
, pp.
7
13
.
18.
Hong
,
R. Y.
,
Feng
,
B.
,
Chen
,
L. L.
,
Liu
,
G. H.
,
Li
,
H. Z.
,
Zheng
,
Y.
, and
Wei
,
D. G.
,
2008
, “
Synthesis, Characterization and MRI Application of Dextran-Coated Fe3O4 Magnetic Nanoparticles
,”
Biochem. Eng. J.
,
42
(
3
), pp.
290
300
.10.1016/j.bej.2008.07.009
19.
Stark
,
D. D.
,
Weissleder
,
R.
,
Elizondo
,
G.
,
Hahn
,
P. F.
,
Saini
,
S.
,
Todd
,
L. E.
,
Wittenberg
,
J.
, and
Ferrucci
,
J. T.
,
1988
, “
Superparamagnetic Iron-Oxide—Clinical-Application as a Contrast Agent for MR Imaging of the Liver
,”
Radiology
,
168
(
2
), pp.
297
301
.10.1148/radiology.168.2.3393649
20.
Hung
,
C. W.
,
Holoman
,
T. R. P.
,
Kofinas
,
P.
, and
Bentley
,
W. E.
,
2008
, “
Towards Oriented Assembly of Proteins Onto Magnetic Nanoparticles
,”
Biochem. Eng. J.
,
38
(
2
), pp.
164
170
.10.1016/j.bej.2007.06.017
21.
Yao
,
Z.
,
Zhang
,
C.
,
Ping
,
Q. N.
, and
Yu
,
L. L. L.
,
2007
, “
A Series of Novel Chitosan Derivatives: Synthesis, Characterization and Micellar Solubilization of Paclitaxel
,”
Carbohydr. Polym.
,
68
(
4
), pp.
781
792
.10.1016/j.carbpol.2006.08.023
22.
Mahato
,
R. I.
,
2005
,
Biomaterials for Delivery and Targeting of Proteins and Nucleic Acids
,
CRC Press
,
Boca Raton, FL
.10.1201/9780203492321
23.
Kohler
,
N.
,
Fryxell
,
G. E.
, and
Zhang
,
M. Q.
,
2004
, “
A Bifunctional Poly(Ethylene Glycol) Silane Immobilized on Metallic Oxide-Based Nanoparticles for Conjugation With Cell Targeting Agents
,”
J. Am. Chem. Soc.
,
126
(
23
), pp.
7206
7211
.10.1021/ja049195r
24.
Arulmurugana
,
R.
,
Jeyadevanb
,
B.
,
Vaidyanathana
,
G.
, and
Sendhilnathanc
,
S.
,
2005
, “
Effect of Zinc Substitution on Co–Zn and Mn–Zn Ferrite Nanoparticles Prepared by Co-Precipitation
,”
J. Magn. Magn. Mat.
,
288
, pp.
470
477
.10.1016/j.jmmm.2004.09.138
25.
Elahi
,
I.
,
Zahira
,
R.
,
Mehmood
,
K.
,
Jamil
,
A.
, and
Amin
,
N.
,
2012
, “
Co-Precipitation Synthesis, Physical and Magnetic Properties of Manganese Ferrite Powder
,”
Afr. J. Pure Appl. Chem.
,
6
(
1
), pp.
1
5
.
26.
Feng
,
B.
,
Honga
,
R. Y.
,
Wanga
,
L. S.
,
Guoc
,
L.
,
Lib
,
H. Z.
,
Dingd
,
J.
,
Zhenge
,
Y.
, and
Weif
,
D. G.
,
2008
, “
Synthesis of Fe3O4/APTES/PEG Diacid Functionalized Magnetic Nanoparticles for MR Imaging
,”
Colloids Surf. A.
,
328
(
1–3
), pp.
52
59
.10.1016/j.colsurfa.2008.06.024
27.
Fischer
,
G.
,
Cao
,
X.
,
Cox
,
N.
, and
Francis
,
M.
,
2004
, “
The FT-IR Spectra of Glycine and Glycylglycine Zwitterions Isolated in Alkali Halide Matrices
,”
Chem. Phys.
,
313
(
1–3
), pp.
39
49
.10.1016/j.chemphys.2004.12.011
28.
Masoudi
,
A.
,
Madaah Hosseini
,
H. R.
,
Shokrgozar
,
M. A.
,
Ahmadi
,
R.
, and
Oghabian
,
M. A.
,
2012
, “
The Effect of Poly(Ethylene Glycol) Coating on Colloidal Stability of Superparamagnetic Iron Oxide Nanoparticles as Potential MRI Contrast Agent
,”
Int. J. Pharm.
,
433
(
1–2
), pp.
129
141
.10.1016/j.ijpharm.2012.04.080
29.
Sun
,
C. R.
,
Du
,
K.
,
Fang
,
C.
,
Bhattarai
,
N.
,
Veiseh
,
O.
,
Kievit
,
F.
,
Stephen
,
Z.
,
Lee
,
D. H.
,
Ellenbogen
,
R. G.
,
Ratner
,
B.
, and
Zhang
,
M. Q.
,
2010
, “
PEG-Mediated Synthesis of Highly Dispersive Multifunctional Superparamagnetic Nanoparticles: Their Physicochemical Properties and Function in Vivo
,”
ACS Nano
,
4
(
4
), pp.
2402
2410
.10.1021/nn100190v
30.
Sun
,
C.
,
Sze
,
R.
, and
Zhang
,
M. Q.
,
2006
, “
Folic Acid-PEG Conjugated Superparamagnetic Nanoparticles for Targeted Cellular Uptake and Detection by MRI
,”
J. Biomed. Mater. Res. A
,
78
(
3
), pp.
550
557
.
31.
Veiseh
,
O.
,
Gunn
,
J. W.
,
Kievit
,
F. M.
,
Sun
,
C.
,
Fang
,
C.
,
Lee
,
J. S. H.
, and
Zhang
,
M. Q.
,
2009
, “
Inhibition of Tumor-Cell Invasion With Chlorotoxin-Bound Superparamagnetic Nanoparticles
,”
Small
,
5
(
2
), pp.
256
264
.10.1002/smll.200800646
32.
Sze
,
A.
,
Erickson
,
D.
,
Ren
,
L. Q.
, and
Li
,
D. Q.
,
2003
, “
Zeta-Potential Measurement Using the Smoluchowski Equation and the Slope of the Current-Time Relationship in Electroosmotic Flow
,”
J. Colloid Interface Sci.
,
261
(
2
), pp.
402
410
.10.1016/S0021-9797(03)00142-5
33.
Zhang
,
Y. Q.
,
Wei
,
X. W.
, and
Yu
,
R.
,
2010
, “
Fe3O4 Nanoparticles-Supported Palladium-Bipyridine Complex: Effective Catalyst for Suzuki Coupling Reaction
,”
Catal. Lett.
,
135
(
3–4
), pp.
256
262
.10.1007/s10562-010-0293-4
You do not currently have access to this content.