Limitations in energy crisis and environment protection promote the development of engine lubricants. By friction machine and AVL diesel engine bench, the present investigation studies the tribological properties and dynamic performance of diesel engine with lubricants of commercial quality dispersed with different mass concentrations of nanodiamond particles. Reverse dragging process tests and mapping characteristics tests were brought in the bench test. Additionally, investigations were conducted using viscometer, thermal conductivity meter, scanning electron microscopy (SEM), and transmission electron microscope (TEM) to interpret the possible influence mechanisms of tribology and thermal conduction with nanodiamond particles. The friction machine experimental results show that lubricants dispersed with nanodiamond particles exhibit good friction-reduction and antiwear properties. The engine bench tests indicate that it has a desirable effect on engine performance, decreasing the mechanical loss while increasing fuel economy.

References

References
1.
Eastman
,
J. A.
,
Choi
,
U. S.
,
Li
,
S.
,
Thompson
,
L. J.
, and
Lee
,
S.
,
1996
, “
Enhanced Thermal Conductivity Through the Development of Nanofluids
,”
1996 MRS Fall Meeting
, Vol.
457
, pp.
3
11
.
2.
Zhang
,
W.
,
Zhou
,
M.
,
Zhu
,
H.
,
Tian
,
Y.
,
Wang
,
K.
,
Wei
,
J.
,
Ji
,
F.
,
Li
,
X.
,
Li
,
Z.
,
Zhang
,
P.
, and
Wu
,
D.
,
2011
, “
Tribological Properties of Oleic Acid-Modified Graphene as Lubricant Oil Additives
,”
J. Phys. D: Appl. Phys.
,
40
(
20
), p.
205303
.
3.
Wu
,
Y. Y.
,
Tsui
,
W. C.
, and
Liu
,
T. C.
,
2007
, “
Experimental Analysis of Tribological Properties of Lubricating Oils With Nanoparticle Additives
,”
Wear
,
262
(
7–8
), pp.
819
825
.
4.
Tao
,
X.
,
Jiazheng
,
Z.
, and
Kang
,
X.
,
1996
, “
The Ball-Bearing Effect of Diamond Nanoparticles as an Oil Additive
,”
J. Phys. D: Appl. Phys.
,
29
(
11
), pp.
2932
2937
.
5.
Choi
,
C.
,
Jung
,
M.
,
Choi
,
Y.
,
Lee
,
J.
, and
Oh
,
J.
,
2011
, “
Tribological Properties of Lubricating Oil-Based Nanofluids With Metal/Carbon Nanoparticles
,”
J. Nanosci. Nanotechnol.
,
11
(
1
), pp.
368
371
.
6.
Rapoport
,
L.
,
Leshchinsky
,
V.
,
Lapsker
,
I.
,
Volovik
,
Y.
,
Nepomnyashchy
,
O.
,
Lvovsky
,
M.
, and
Popovitz-Biro
,
R.
,
2003
, “
Tribological Properties of WS2 Nanoparticles Under Mixed Lubrication
,”
Wear
,
255
(
7–12
), pp.
785
793
.
7.
Rapoport
,
L.
,
Leshchinsky
,
V.
,
Lvovsky
,
M.
,
Lapsker
,
I.
,
Volovik
,
Y.
,
Feldman
,
Y.
,
Popovitz-Biro
,
R.
, and
Tenne
,
R.
,
2003
, “
Superior Tribological Properties of Powder Materials With Solid Lubricant Nanoparticles
,”
Wear
,
255
(
7–12
), pp.
794
800
.
8.
Rapoport
,
L.
,
Nepomnyashchy
,
O.
,
Lapsker
,
I.
,
Verdyan
,
A.
,
Moshkovich
,
A.
,
Feldman
,
Y.
, and
Tenne
,
R.
,
2005
, “
Behavior of Fullerene-Like WS2 Nanoparticles Under Severe Contact Conditions
,”
Wear
,
259
(
1–6
), pp.
703
707
.
9.
Mintsa
,
H. A.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Doucet
,
D.
,
2009
, “
New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
363
371
.
10.
Moosavi
,
M.
,
Goharshadi
,
E. K.
, and
Youssefi
,
A.
,
2010
, “
Fabrication, Characterization, and Measurement of Some Physicochemical Properties of ZnO Nanofluids
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
599
605
.
11.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Hoseini
,
S. M.
, and
Jamnani
,
M. S.
,
2011
, “
Experimental Study of Heat Transfer Enhancement Using Water/Ethylene Glycol Based Nanofluids as a New Coolant for Car Radiators
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1283
1290
.
12.
Leong
,
K. Y.
,
Saidur
,
R.
,
Kazi
,
S. N.
, and
Mamun
,
A. H.
,
2010
, “
Performance Investigation of an Automotive Car Radiator Operated With Nanofluid-Based Coolants (Nanofluid as a Coolant in a Radiator)
,”
Appl. Therm. Eng.
,
30
(
17–18
), pp.
2685
2692
.
13.
Mufti
,
R. A.
, and
Priest
,
M.
,
2009
, “
Effect of Engine Operating Conditions and Lubricant Rheology on the Distribution of Losses in an Internal Combustion Engine
,”
ASME J. Tribol.
,
131
(
4
), p.
041101
.
14.
Sarma
,
P. K.
,
Srinivas
,
V.
,
Rao
,
V. D.
, and
Kumar
,
A. K.
,
2011
, “
Experimental Study and Analysis of Lubricants Dispersed With Nano Cu and TiO2 in a Four-Stroke Two Wheeler
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
233
243
.
15.
Aravind
,
S. S. J.
,
Baskar
,
P.
,
Baby
,
T. T.
,
Sabareesh
,
R. K.
,
Das
,
S.
, and
Ramaprabhu
,
S.
,
2011
, “
Investigation of Structural Stability, Dispersion, Viscosity, and Conductive Heat Transfer Properties of Functionalized Carbon Nanotube Based Nanofluids
,”
J. Phys. Chem. C
,
115
(
34
), pp.
16737
16744
.
16.
Ettefaghi
,
E.
,
Ahmadi
,
H.
,
Rashidi
,
A.
,
Nouralishahi
,
A.
, and
Mohtasebi
,
S. S.
,
2013
, “
Preparation and Thermal Properties of Oil-Based Nanofluid From Multi-Walled Carbon Nanotubes and Engine oil as Nano-Lubricant
,”
Int. Commun. Heat Mass Transfer
,
46
(8), pp.
142
147
.
17.
Saeed
,
M. B.
, and
Zhan
,
M. S.
,
2007
, “
Adhesive Strength of Nano-Size Particles Filled Thermoplastic Polyimides Part-I: Multi-Walled Carbon Nano-Tubes (MWNT)—Polyimide Composite Films
,”
Int. J. Adhesion Adhes.
,
27
(
4
), pp.
306
318
.
18.
Sarkar
,
J.
,
2011
, “
A Critical Review on Convective Heat Transfer Correlations of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
(
6
), pp.
3271
3277
.
19.
Ronena
,
A.
,
Etsiona
,
I.
, and
Kligermanb
,
Y.
,
2001
, “
Friction-Reducing Surface-Texturing in Reciprocating Automotive Components
,”
Tribol. Trans.
,
44
(
3
), pp.
359
366
.
You do not currently have access to this content.