One of the greatest challenges in surface enhanced Raman scattering (SERS) sensing is to detect biochemicals directly from suspension with ultrasensitivity. In this work, we employed strategically designed longitudinal nanocapsule structures with uniformly surface distributed Ag nanoparticles (Ag NPs) to dually focus and enhance SERS sensitivity of biochemicals in suspension assisted with electric fields. By tuning the reaction conditions, Ag NPs were synthesized and uniformly grown with optimized sizes and junctions on the surface of nanocapsules for well reproducible detection. The Ag NPs can further concentrate molecules from suspension due to induced electrokinetic effects in electric fields. As a result, the signals of Nile blue molecules can be enhanced by 34.4±3.1% at optimal alternating current (AC) frequencies and voltages compared to that without electric fields. This work demonstrates the dual roles of a new type of plasmonic NPs for molecule concentration and detection, which could inspire new Raman sensing devices for applications in microfluidics.

References

References
1.
Kang
,
T.
,
Yoo
,
S. M.
,
Yoon
,
I.
,
Lee
,
S. Y.
, and
Kim
,
B.
,
2010
, “
Patterned Multiplex Pathogen DNA Detection by Au Particle-on-Wire SERS Sensor
,”
Nano Lett.
,
10
(
4
), pp.
1189
1193
.10.1021/nl1000086
2.
Barhoumi
,
A.
, and
Halas
,
N. J.
,
2010
, “
Label-Free Detection of DNA Hybridization Using Surface Enhanced Raman Spectroscopy
,”
J. Am. Chem. Soc.
,
132
(
37
), pp.
12792
12793
.10.1021/ja105678z
3.
Bell
,
S. E. J.
, and
Sirimuthu
,
N. M. S.
,
2006
, “
Surface-Enhanced Raman Spectroscopy (SERS) for Sub-Micromolar Detection of DNA/RNA Mononucleotides
,”
J. Am. Chem. Soc.
,
128
(
49
), pp.
15580
15581
.10.1021/ja066263w
4.
Bhandari
,
D.
,
Walworth
,
M. J.
, and
Sepaniak
,
M. J.
,
2009
, “
Dual Function Surface-Enhanced Raman Active Extractor for the Detection of Environmental Contaminants
,”
Appl. Spectrosc.
,
63
(
5
), pp.
571
578
.10.1366/000370209788347002
5.
Alvarez-Puebla
,
R. A.
,
Dos Santos
,
D. S.
, and
Aroca
,
R. F.
,
2007
, “
SERS Detection of Environmental Pollutants in Humic Acid-Gold Nanoparticle Composite Materials
,”
Analyst
,
132
(
12
), pp.
1210
1214
.10.1039/b711361g
6.
Chou
,
A.
,
Jaatinen
,
E.
,
Buividas
,
R.
,
Seniutinas
,
G.
,
Juodkazis
,
S.
,
Izake
,
E. L.
, and
Fredericks
,
P. M.
,
2012
, “
SERS Substrate for Detection of Explosives
,”
Nanoscale
,
4
(
23
), pp.
7419
7424
.10.1039/c2nr32409a
7.
Demeritte
,
T.
,
Kanchanapally
,
R.
,
Fan
,
Z.
,
Singh
,
A. K.
,
Senapati
,
D.
,
Dubey
,
M.
,
Zakar
,
E.
, and
Ray
,
P. C.
,
2012
, “
Highly Efficient SERS Substrate for Direct Detection of Explosive TNT Using Popcorn-Shaped Gold Nanoparticle-Functionalized SWCNT Hybrid
,”
Analyst
,
137
(
21
), pp.
5041
5045
.10.1039/c2an35984g
8.
Stuart
,
D. A.
,
Biggs
,
K. B.
, and
Van Duyne
,
R. P.
,
2006
, “
Surface-Enhanced Raman Spectroscopy of Half-Mustard Agent
,”
Analyst
,
131
(
4
), pp.
568
572
.10.1039/b513326b
9.
Le Ru
,
E. C.
,
Blackie
,
E.
,
Meyer
,
M.
, and
Etchegoin
,
P. G.
,
2007
, “
Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study
,”
J. Phys. Chem. C
,
111
(
37
), pp.
13794
13803
.10.1021/jp0687908
10.
Nie
,
S. M.
, and
Emery
,
S. R.
,
1997
, “
Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering
,”
Science
,
275
(
5303
), pp.
1102
1106
.10.1126/science.275.5303.1102
11.
Xu
,
X. B.
,
Kim
,
K.
,
Li
,
H. F.
, and
Fan
,
D. L.
,
2012
, “
Ordered Arrays of Raman Nanosensors for Ultrasensitive and Location Predictable Biochemical Detection
,”
Adv. Mater.
,
24
(
40
), pp.
5457
5463
.10.1002/adma.201201820
12.
Jeanmaire
,
D. L.
, and
Van Duyne
,
R. P.
,
1977
, “
Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode
,”
J. Electroanal. Chem. Interfacial Electrochem.
,
84
(
1
), pp.
1
20
.10.1016/S0022-0728(77)80224-6
13.
Fleischmann
,
M.
,
Hendra
,
P. J.
, and
Mcquilla
,
A. J.
,
1974
, “
Raman-Spectra of Pyridine Adsorbed at a Silver Electrode
,”
Chem. Phys. Lett.
,
26
(
2
), pp.
163
166
.10.1016/0009-2614(74)85388-1
14.
Tao
,
A.
,
Kim
,
F.
,
Hess
,
C.
,
Goldberger
,
J.
,
He
,
R.
,
Sun
,
Y.
,
Xia
,
Y.
, and
Yang
,
P.
,
2003
, “
Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy
,”
Nano Lett.
,
3
(
9
), pp.
1229
1233
.10.1021/nl0344209
15.
Banholzer
,
M. J.
,
Qin
,
L. D.
,
Millstone
,
J. E.
,
Osberg
,
K. D.
, and
Mirkin
,
C. A.
,
2009
, “
On-Wire Lithography: Synthesis, Encoding and Biological Applications
,”
Nat. Protoc.
,
4
(
6
), pp.
838
848
.10.1038/nprot.2009.52
16.
Wang
,
Y. L.
,
Lee
,
K.
, and
Irudayaraj
,
J.
,
2010
, “
Silver Nanosphere SERS Probes for Sensitive Identification of Pathogens
,”
J. Phys. Chem. C
,
114
(
39
), pp.
16122
16128
.10.1021/jp1015406
17.
Chon
,
H.
,
Lee
,
S.
,
Son
,
S. W.
,
Oh
,
C. H.
, and
Choo
,
J.
,
2009
, “
Highly Sensitive Immunoassay of Lung Cancer Marker Carcinoembryonic Antigen Using Surface-Enhanced Raman Scattering of Hallow Gold Nanospheres
,”
Anal. Chem.
,
81
(
8
), pp.
3029
3034
.10.1021/ac802722c
18.
Stockle
,
R. M.
,
Suh
,
Y. D.
,
Deckert
,
V.
, and
Zenobi
,
R.
,
2000
, “
Nanoscale Chemical Analysis by Tip-Enhanced Raman Spectroscopy
,”
Chem. Phys. Lett.
,
318
(
1-3
), pp.
131
136
.10.1016/S0009-2614(99)01451-7
19.
Sonntag
,
M. D.
,
Klingsporn
,
J. M.
,
Garibay
,
L. K.
,
Roberts
,
J. M.
,
Dieringer
,
J. A.
,
Seideman
,
T.
,
Scheidt
,
K. A.
,
Jensen
,
L.
,
Schatz
,
G. C.
, and
Van Duyne
,
R. P.
,
2012
, “
Single-Molecule Tip-Enhanced Raman Spectroscopy
,”
J. Phys. Chem. C
,
116
(
1
), pp.
478
483
.10.1021/jp209982h
20.
Prokes
,
S. M.
,
Glembocki
,
O. J.
,
Rendell
,
R. W.
, and
Ancona
,
M. G.
,
2007
, “
Enhanced Plasmon Coupling in Crossed Dielectric/Metal Nanowire Composite Geometries and Applications to Surface-Enhanced Raman Spectroscopy
,”
Appl. Phys. Lett.
,
90
(
9
), p.
093105
.10.1063/1.2709996
21.
Shen
,
A. G.
,
Chen
,
L. F.
,
Xie
,
W.
,
Hu
,
J. C.
,
Zeng
,
A.
,
Richards
,
R.
, and
Hu
,
J. M.
,
2010
, “
Triplex Au-Ag-C Core Shell Nanoparticles as a Novel Raman Label
,”
Adv. Funct. Mater.
,
20
(
6
), pp.
969
975
.10.1002/adfm.200901847
22.
Xu
,
X. B.
,
Li
,
H. F.
,
Hasan
,
D.
,
Ruoff
,
R. S.
,
Wang
,
A. X.
, and
Fan
,
D. L.
,
2013
, “
Near-Field Enhanced Plasmonic-Magnetic Bifunctional Nanotubes for Single Cell Bioanalysis
,”
Adv. Funct. Mater.
,
23
(
35
), pp.
4332
4338
.10.1002/adfm.201203822
23.
Hughes
,
M. P.
,
2003
,
Nanoelectromechanics in Engineering and Biology
,
CRC
,
Boca Raton
.
24.
Barik
,
A.
,
Otto
,
L. M.
,
Yoo
,
D.
,
Jose
,
J.
,
Johnson
,
T. W.
, and
Oh
,
S. H.
,
2014
, “
Dielectrophoresis-Enhanced Plasmonic Sensing With Gold Nanohole Arrays
,”
Nano Lett.
,
14
(
4
), pp.
2006
2012
.10.1021/nl500149h
25.
Deng
,
Y. L.
, and
Juang
,
Y. J.
,
2013
, “
Electrokinetic Trapping and Surface Enhanced Raman Scattering Detection of Biomolecules Using Optofluidic Device Integrated With a Microneedles Array
,”
Biomicrofluidics
,
7
(
1
), p.
014111
.10.1063/1.4793224
26.
Park
,
M.
,
Oh
,
Y.-J.
, and
Jeong
,
K.-H.
,
2013
, “
Electrophoretic Preconcentration on Plasmonic Nanopillar Arrays for Highly Intense Surface-Enhanced Raman Scattering
,”
The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, Transducers and Eurosensors XXVII
,
IEEE
, pp.
1803
1806
.
27.
Cherukulappurath
,
S.
,
Lee
,
S. H.
,
Campos
,
A.
,
Haynes
,
C. L.
, and
Oh
,
S.-H.
,
2014
, “
Rapid and Sensitive In Situ SERS Detection Using Dielectrophoresis
,”
Chem. Mater.
,
26
(
7
), pp.
2445
2452
.10.1021/cm500062b
28.
Cho
,
H. S.
,
Lee
,
B.
,
Liu
,
G. L.
,
Agarwal
,
A.
, and
Lee
,
L. P.
,
2009
, “
Label-Free and Highly Sensitive Biomolecular Detection Using SERS and Electrokinetic Preconcentration
,”
Lab Chip
,
9
(
23
), pp.
3360
3363
.10.1039/b912076a
29.
Fan
,
D. L.
,
Cammarata
,
R. C.
, and
Chien
,
C. L.
,
2008
, “
Precision Transport and Assembling of Nanowires in Suspension by Electric Fields
,”
Appl. Phys. Lett.
,
92
(
9
), p.
093115
.10.1063/1.2891091
30.
Xu
,
X. B.
,
Hasan
,
D. H.
,
Wang
,
L.
,
Chakravarty
,
S.
,
Chen
,
R. T.
,
Fan
,
D. L.
, and
Wang
,
A. X.
,
2012
, “
Guided-Mode-Resonance-Coupled Plasmonic-Active SiO2 Nanotubes for Surface Enhanced Raman Spectroscopy
,”
Appl. Phys. Lett.
,
100
(
19
), p.
191114
.10.1063/1.4714710
31.
Li
,
M. W.
,
Bhiladvala
,
R. B.
,
Morrow
,
T. J.
,
Sioss
,
J. A.
,
Lew
,
K. K.
,
Redwing
,
J. M.
,
Keating
,
C. D.
, and
Mayer
,
T. S.
,
2008
, “
Bottom-Up Assembly of Large-Area Nanowire Resonator Arrays
,”
Nat. Nanotechnol.
,
3
(
2
), pp.
88
92
.10.1038/nnano.2008.26
32.
Smith
,
B. D.
,
Mayer
,
T. S.
, and
Keating
,
C. D.
,
2012
, “
Deterministic Assembly of Functional Nanostructures Using Nonuniform Electric Fields
,”
Annu. Rev. Phys. Chem.
,
63
, pp.
241
263
.10.1146/annurev-physchem-032210-103346
33.
Jones
,
T. B.
,
1995
,
Electromechanics of Particles
,
Cambridge University Press
,
New York
.10.1017/CBO9780511574498
34.
Fan
,
D. L.
,
Zhu
,
F. Q.
,
Cammarata
,
R. C.
, and
Chien
,
C. L.
,
2004
, “
Manipulation of Nanowires in Suspension by AC Electric Fields
,”
Appl. Phys. Lett.
,
85
(
18
), pp.
4175
4177
.10.1063/1.1812364
35.
Li
,
D.
,
2008
,
Encyclopedia of Microfluidics and Nanofluidics
,
Springer
,
New York
.
36.
Cheng
,
I.-F.
,
Chen
,
T.-Y.
,
Lu
,
R.-J.
, and
Wu
,
H.-W.
,
2014
, “
Rapid Identification of Bacteria Utilizing Amplified Dielectrophoretic Force-Assisted Nanoparticle-Induced Surface-Enhanced Raman Spectroscopy
,”
Nanoscale Res. Lett.
,
9
(
324
)10.1186/1556-276X-9-324.
37.
Liu
,
C.
,
Kim
,
K.
, and
Fan
,
D. L.
,
2014
, “
Location Deterministic Biosensing From Quantum-Dot-Nanowire Assemblies
,”
Appl. Phys. Lett.
,
105
(
8
), p.
083123
.10.1063/1.4893878
You do not currently have access to this content.