Single-crystalline nanoporous gallium nitride (GaN) thin films were fabricated with the pore size readily tunable in 20–100 nm. Uniform adhesion and spreading of human mesenchymal stem cells (hMSCs) seeded on these thin films peak on the surface with pore size of 30 nm. Substantial cell elongation emerges as pore size increases to ∼80 nm. The osteogenic differentiation of hMSCs occurs preferentially on the films with 30 nm sized nanopores, which is correlated with the optimum condition for cell spreading, which suggests that adhesion, spreading, and stem cell differentiation are interlinked and might be coregulated by nanotopography.

References

References
1.
Collins
,
R. T.
,
Fauchet
,
P. M.
, and
Tischler
,
M. A.
,
1997
, “
Porous Silicon: From Luminescence to LEDs
,”
Phys. Today
,
50
(
1
), pp.
24
31
.10.1063/1.881650
2.
Lazarouk
,
S.
,
Jaguiro
,
P.
,
Katsouba
,
S.
,
Masini
,
G.
,
La Monica
,
S.
,
Maiello
,
G.
, and
Ferrari
,
A.
,
1996
, “
Stable Electroluminescence From Reverse Biased n-Type Porous Silicon-Aluminum Schottky Junction Device
,”
Appl. Phys. Lett.
,
68
(
15
), pp.
2108
2110
.10.1063/1.115600
3.
Richter
,
A.
,
Steiner
,
P.
,
Kozlowski
,
F.
, and
Lang
,
W.
,
1991
, “
Current-Induced Light-Emission From a Porous Silicon Device
,”
IEEE Electron Device Lett.
,
12
(
12
), pp.
691
692
.10.1109/55.116957
4.
Steiner
,
P.
,
Kozlowski
,
F.
, and
Lang
,
W.
,
1993
, “
Light-Emitting Porous Silicon Diode With an Increased Electroluminescence Quantum Efficiency
,”
Appl. Phys. Lett.
,
62
(
21
), pp.
2700
2702
.10.1063/1.109236
5.
Foucaran
,
A.
,
Pascal-Delannoy
,
F.
,
Giani
,
A.
,
Sackda
,
A.
,
Combette
,
P.
, and
Boyer
,
A.
,
1997
, “
Porous Silicon Layers Used for Gas Sensor Applications
,”
Thin Solid Films
,
297
(
1–2
), pp.
317
320
.10.1016/S0040-6090(96)09437-0
6.
Sailor
,
M. J.
, and
Link
,
J. R.
,
2005
, “
‘Smart Dust': Nanostructured Devices in a Grain of Sand
,”
Chem. Commun.
,
21
(
11
), pp.
1375
1383
.10.1039/B417554A
7.
Chan
,
S.
,
Fauchet
,
P. M.
,
Li
,
Y.
,
Rothberg
,
L. J.
, and
Miller
,
B. L.
,
2000
, “
Porous Silicon Microcavities for Biosensing Applications
,”
Phys. Status Solidi A
,
182
(
1
), pp.
541
546
.10.1002/1521-396X(200011)182:1<541::AID-PSSA541>3.0.CO;2-#
8.
Coffer
,
J. L.
,
Whitehead
,
M. A.
,
Nagesha
,
D. K.
,
Mukherjee
,
P.
,
Akkaraju
,
G.
,
Totolici
,
M.
,
Saffie
,
R. S.
, and
Canham
,
L. T.
,
2005
, “
Porous Silicon-Based Scaffolds for Tissue Engineering and Other Biomedical Applications
,”
Phys. Status Solidi A
,
202
(
8
), pp.
1451
1455
.10.1002/pssa.200461134
9.
Lin
,
V. S. Y.
,
Motesharei
,
K.
,
Dancil
,
K. P.
,
Sailor
,
M. J.
, and
Ghadiri
,
M. R.
,
1997
, “
A Porous Silicon-Based Optical Interferometric Biosensor
,”
Science
,
278
(
5339
), pp.
840
843
.10.1126/science.278.5339.840
10.
Thust
,
M.
,
Schöning
,
M. J.
,
Frohnhoff
,
S.
,
Arens-Fischer
,
R.
,
Kordos
,
P.
, and
Lüth
,
H.
,
1996
, “
Porous Silicon as a Substrate Material for Potentiometric Biosensors
,”
Meas. Sci. Technol.
,
7
(
1
), pp.
26
29
.10.1088/0957-0233/7/1/003
11.
Dancil
,
K. P. S.
,
Greiner
,
D. P.
, and
Sailor
,
M. J.
,
1999
, “
A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface
,”
J. Am. Chem. Soc.
,
121
(
34
), pp.
7925
7930
.10.1021/ja991421n
12.
Haidary
,
S. M.
,
Corcoles
,
E. P.
, and
Ali
,
N. K.
,
2012
, “
Nanoporous Silicon as Drug Delivery Systems for Cancer Therapies
,”
J. Nanomater.
,
2012
, p.
830503
.10.1155/2012/830503
13.
Ileri
,
N.
,
Létant
,
S. E.
,
Britten
,
J.
,
Nguyen
,
H.
,
Larson
,
C.
,
Zaidi
,
S.
,
Palazoglu
,
A.
,
Faller
,
R.
,
Tringe
,
J. W.
, and
Stroeve
,
P.
,
2009
, “
Efficient Nanoporous Silicon Membranes for Integrated Microfluidic Separation and Sensing Systems
,”
MRS Proc.
,
1191
, pp.
87
92
.10.1557/PROC-1191-OO09-02
14.
Kim
,
S. T.
,
Kim
,
D.-J.
,
Kim
,
T.-J.
,
Seo
,
D.-W.
,
Kim
,
T.-H.
,
Lee
,
S.-Y.
,
Kim
,
K.
,
Lee
,
K.-M.
, and
Lee
,
S.-K.
,
2010
, “
Novel Streptavidin-Functionalized Silicon Nanowire Arrays for CD4(+) T Lymphocyte Separation
,”
Nano Lett.
,
10
(
8
), pp.
2877
2883
.10.1021/nl100942p
15.
Lee
,
S. K.
,
Kim
,
G.-S.
,
Wu
,
Y.
,
Kim
,
D.-J.
,
Lu
,
Y.
,
Kwak
,
M.
,
Han
,
L.
,
Hyung
,
J.-H.
,
Seol
,
J.-K.
,
Sander
,
C.
,
Gonzalez
,
A.
,
Li
,
J.
, and
Fan
,
R.
,
2012
, “
Nanowire Substrate-Based Laser Scanning Cytometry for Quantitation of Circulating Tumor Cells
,”
Nano Lett.
,
12
(
6
), pp.
2697
2704
.10.1021/nl2041707
16.
Shalek
,
A. K.
,
Robinson
,
J. T.
,
Karp
,
E. S.
,
Lee
,
J. S.
,
Ahn
,
D.-R.
,
Yoon
,
M.-H.
,
Sutton
,
A.
,
Jorgolli
,
M.
,
Gertner
,
R. S.
,
Gujral
,
T. S.
,
MacBeath
,
G.
,
Yang
,
E. G.
, and
Park
,
H.
,
2010
, “
Vertical Silicon Nanowires as a Universal Platform for Delivering Biomolecules Into Living Cells
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
5
), pp.
1870
1875
.10.1073/pnas.0909350107
17.
Andersson
,
A. S.
,
Bäckhed
,
F.
,
von Euler
,
A.
,
Richter-Dahlfors
,
A.
,
Sutherland
,
D.
, and
Kasemo
,
B.
,
2003
, “
Nanoscale Features Influence Epithelial Cell Morphology and Cytokine Production
,”
Biomaterials
,
24
(
20
), pp.
3427
3436
.10.1016/S0142-9612(03)00208-4
18.
Dalby
,
M. J.
,
Riehle
,
M. O.
,
Johnstone
,
H. J.
,
Affrossman
,
S.
, and
Curtis
,
A. S.
,
2002
, “
Polymer-Demixed Nanotopography: Control of Fibroblast Spreading and Proliferation
,”
Tissue Eng.
,
8
(
6
), pp.
1099
1108
.10.1089/107632702320934191
19.
Dalby
,
M. J.
,
Yarwood
,
S. J.
,
Riehle
,
M. O.
,
Johnstone
,
H. J.
,
Affrossman
,
S.
, and
Curtis
,
A. S.
,
2002
, “
Increasing Fibroblast Response to Materials Using Nanotopography: Morphological and Genetic Measurements of Cell Response to 13-nm-High Polymer Demixed Islands
,”
Exp. Cell Res.
,
276
(
1
), pp.
1
9
.10.1006/excr.2002.5498
20.
Rice
,
J. M.
,
Hunt
,
J. A.
,
Gallagher
,
J. A.
,
Hanarp
,
P.
,
Sutherland
,
D. S.
, and
Gold
,
J.
,
2003
, “
Quantitative Assessment of the Response of Primary Derived Human Osteoblasts and Macrophages to a Range of Nanotopography Surfaces in a Single Culture Model In Vitro
,”
Biomaterials
,
24
(
26
), pp.
4799
4818
.10.1016/S0142-9612(03)00381-8
21.
Riehle
,
M. O.
,
Dalby
,
M. J.
,
Johnstone
,
H.
,
MacIntosh
,
A.
, and
Affrossman
,
S.
,
2003
, “
Cell Behaviour of Rat Calvaria Bone Cells on Surfaces With Random Nanometric Features
,”
Mater. Sci. Eng., C
,
23
(
3
), pp.
337
340
.10.1016/S0928-4931(02)00282-5
22.
Dalby
,
M. J.
,
Gadegaard
,
N.
,
Riehle
,
M. O.
,
Wilkinson
,
C. D.
, and
Curtis
,
A. S.
,
2004
, “
Investigating Filopodia Sensing Using Arrays of Defined Nano-Pits Down to 35 nm Diameter in Size
,”
Int. J. Biochem. Cell Biol.
,
36
(
10
), pp.
2005
2015
.10.1016/j.biocel.2004.03.001
23.
Dalby
,
M. J.
,
Riehle
,
M. O.
,
Johnstone
,
H. J.
,
Affrossman
,
S.
, and
Curtis
,
A. S.
,
2003
, “
Nonadhesive Nanotopography: Fibroblast Response to Poly(n-Butyl Methacrylate)-Poly(Styrene) Demixed Surface Features
,”
J. Biomed. Mater. Res., Part A
,
67A
(
3
), pp.
1025
1032
.10.1002/jbm.a.10139
24.
Goldberg
,
D. J.
, and
Burmeister
,
D. W.
,
1986
, “
Stages in Axon Formation-Observations of Growth of Aplysia Axons in Culture Using Video-Enhanced Contrast-Differential Interference Contrast Microscopy
,”
J. Cell Biol.
,
103
(
5
), pp.
1921
1931
.10.1083/jcb.103.5.1921
25.
Polinsky
,
M.
,
Balazovich
,
K.
, and
Tosney
,
K. W.
,
2000
, “
Identification of an Invariant Response: Stable Contact With Schwann Cells Induces Veil Extension in Sensory Growth Cones
,”
J. Neurosci.
,
20
(
3
), pp.
1044
1055
.
26.
Yim
,
E. K. F.
,
Reano
,
R. M.
,
Pang
,
S. W.
,
Yee
,
A. F.
,
Chen
,
C. S.
, and
Leong
,
K. W.
,
2005
, “
Nanopattern-Induced Changes in Morphology and Motility of Smooth Muscle Cells
,”
Biomaterials
,
26
(
26
), pp.
5405
5413
.10.1016/j.biomaterials.2005.01.058
27.
Dalby
,
M. J.
,
Gadegaard
,
N.
,
Tare
,
R.
,
Andar
,
A.
,
Riehle
,
M. O.
,
Herzyk
,
P.
,
Wilkinson
,
C. D. W.
, and
Oreffo
,
R. O. C.
,
2007
, “
The Control of Human Mesenchymal Cell Differentiation Using Nanoscale Symmetry and Disorder
,”
Nat. Mater.
,
6
(
12
), pp.
997
1003
.10.1038/nmat2013
28.
Yim
,
E. K. F.
,
Pang
,
S. W.
, and
Leong
,
K. W.
,
2007
, “
Synthetic Nanostructures Inducing Differentiation of Human Mesenchymal Stem Cells Into Neuronal Lineage
,”
Exp. Cell Res.
,
313
(
9
), pp.
1820
1829
.10.1016/j.yexcr.2007.02.031
29.
Oh
,
S.
,
Brammer
,
K. S.
,
Li
,
Y. S.
,
Teng
,
D.
,
Engler
,
A. J.
,
Chien
,
S.
, and
Jin
,
S.
,
2009
, “
Stem Cell Fate Dictated Solely by Altered Nanotube Dimension
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
7
), pp.
2130
2135
.10.1073/pnas.0813200106
30.
McMurray
,
R. J.
,
Gadegaard
,
N.
,
Tsimbouri
,
P. M.
,
Burgess
,
K. V.
,
McNamara
,
L. E.
,
Tare
,
R.
,
Murawski
,
K.
,
Kingham
,
E.
,
Oreffo
,
R. O. C.
, and
Dalby
,
M. J.
,
2011
, “
Nanoscale Surfaces for the Long-Term Maintenance of Mesenchymal Stem Cell Phenotype and Multipotency
,”
Nat. Mater.
,
10
(
8
), pp.
637
644
.10.1038/nmat3058
31.
Yim
,
E. K. F.
,
Darling
,
E. M.
,
Kulangara
,
K.
,
Guilak
,
F.
, and
Leong
,
K. W.
,
2010
, “
Nanotopography-Induced Changes in Focal Adhesions, Cytoskeletal Organization, and Mechanical Properties of Human Mesenchymal Stem Cells
,”
Biomaterials
,
31
(
6
), pp.
1299
1306
.10.1016/j.biomaterials.2009.10.037
32.
Bauer
,
S.
,
Park
,
J.
,
Faltenbacher
,
J.
,
Berger
,
S.
,
von der Mark
,
K.
, and
Schmuki
,
P.
,
2009
, “
Size Selective Behavior of Mesenchymal Stem Cells on ZrO2 and TiO2 Nanotube Arrays
,”
Integr. Biol.
,
1
(
8–9
), pp.
525
532
.10.1039/b908196h
33.
Webster
,
T. J.
,
Ergun
,
C.
,
Doremus
,
R. H.
,
Siegel
,
R. W.
, and
Bizios
,
R.
,
2000
, “
Enhanced Functions of Osteoblasts on Nanophase Ceramics
,”
Biomaterials
,
21
(
17
), pp.
1803
1810
.10.1016/S0142-9612(00)00075-2
34.
Popat
,
K. C.
,
Chatvanichkul
,
K. I.
,
Barnes
,
G. L.
,
Latempa
,
T. J.
, Jr.
,
Grimes
,
C. A.
, and
Desai
,
T. A.
,
2007
, “
Osteogenic Differentiation of Marrow Stromal Cells Cultured on Nanoporous Alumina Surfaces
,”
J. Biomed. Mater. Res., Part A
,
80A
(
4
), pp.
955
964
.10.1002/jbm.a.31028
35.
Kim
,
J. A.
,
Jang
,
E. Y.
,
Kang
,
T. J.
,
Yoon
,
S.
,
Ovalle-Robles
,
R.
,
Rhee
,
W. J.
,
Kim
,
T.
,
Baughman
,
R. H.
,
Kim
,
Y. H.
, and
Park
,
T. H.
,
2012
, “
Regulation of Morphogenesis and Neural Differentiation of Human Mesenchymal Stem Cells Using Carbon Nanotube Sheets
,”
Integr. Biol.
,
4
(
6
), pp.
587
594
.10.1039/c2ib20017a
36.
Kim
,
S. J.
,
Lee
,
J. K.
,
Kim
,
J. W.
,
Jung
,
J. W.
,
Seo
,
K.
,
Park
,
S. B.
,
Roh
,
K. H.
,
Lee
,
S. R.
,
Hong
,
Y. H.
,
Kim
,
S. J.
,
Lee
,
Y. S.
,
Kim
,
S. J.
, and
Kang
,
K. S.
,
2008
, “
Surface Modification of Polydimethylsiloxane (PDMS) Induced Proliferation and Neural-Like Cells Differentiation of Umbilical Cord Blood-Derived Mesenchymal Stem Cells
,”
J. Mater. Sci.: Mater. Med.
,
19
(
8
), pp.
2953
2962
.10.1007/s10856-008-3413-6
37.
Park
,
J.
,
Bauer
,
S.
,
von der Mark
,
K.
, and
Schmuki
,
P.
,
2007
, “
Nanosize and Vitality: TiO2 Nanotube Diameter Directs Cell Fate
,”
Nano Lett.
,
7
(
6
), pp.
1686
1691
.10.1021/nl070678d
38.
Jewett
,
S. A.
,
Makowski
,
M. S.
,
Andrews
,
B.
,
Manfra
,
M. J.
, and
Ivanisevic
,
A.
,
2012
, “
Gallium Nitride is Biocompatible and Non-Toxic Before and After Functionalization With Peptides
,”
Acta Biomater.
,
8
(
2
), pp.
728
733
.10.1016/j.actbio.2011.09.038
39.
Zhang
,
Y.
,
Ryu
,
S.-W.
,
Yerino
,
C.
,
Leung
,
B.
,
Sun
,
Q.
,
Song
,
Q.
,
Cao
,
H.
, and
Han
,
J.
,
2010
, “
A Conductivity-Based Selective Etching for Next Generation GaN Devices
,”
Phys. Status Solidi B
,
247
(
7
), pp.
1713
1716
.10.1002/pssb.200983650
40.
Zhang
,
Y.
,
Sun
,
Q.
,
Leung
,
B.
,
Simon
,
J.
,
Lee
,
M. L.
, and
Han
,
J.
,
2011
, “
The Fabrication of Large-Area, Free-Standing GaN by a Novel Nanoetching Process
,”
Nanotechnology
,
22
(
4
), p.
045603
.10.1088/0957-4484/22/4/045603
41.
Cullis
,
A. G.
, and
Canham
,
L. T.
,
1991
, “
Visible-Light Emission Due to Quantum Size Effects in Highly Porous Crystalline Silicon
,”
Nature
,
353
(
6342
), pp.
335
338
.10.1038/353335a0
You do not currently have access to this content.