Due to their superior mechanical and electrical properties, multiwalled carbon nanotubes (MWCNTs) have the potential to be used in many nano-/micro-electronic applications, e.g., through silicon vias (TSVs), interconnects, transistors, etc. In particular, use of MWCNT bundles inside annular cylinders of copper (Cu) as TSV is proposed in this study. However, the significant difference in scale makes it difficult to evaluate the interfacial mechanical integrity. Cohesive zone models (CZM) are typically used at large scale to determine the mechanical adherence at the interface. However, at molecular level, no routine technique is available. Molecular dynamic (MD) simulations is used to determine the stresses that are required to separate MWCNTs from a copper slab and generate normal stress–displacement curves for CZM. Only van der Waals (vdW) interaction is considered for MWCNT/Cu interface. A displacement controlled loading was applied in a direction perpendicular to MWCNT's axis in different cases with different number of walls and at different temperatures and CZM is obtained for each case. Furthermore, their effect on the CZM key parameters (normal cohesive strength (σmax) and the corresponding displacement (δn) has been studied. By increasing the number of the walls of the MWCNT, σmax was found to nonlinearly decrease. Displacement at maximum stress, δn, showed a nonlinear decrease as well with increasing the number of walls. Temperature effect on the stress–displacement curves was studied. When temperature was increased beyond 1 K, no relationship was found between the maximum normal stress and temperature. Likewise, the displacement at maximum load did not show any dependency to temperature.

References

References
1.
Jorio
,
A.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M.
,
2008
,
Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications
,
Springer
,
Berlin, Heidelberg, Gemany
.
2.
Saito
,
S.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
,
1998
,
Physical Properties of Carbon Nanotubes
,
Imperial College Press
,
London, UK
.10.1142/9781860943799
3.
Harris
,
P. J. F.
,
2009
,
Carbon Nanotube Science: Synthesis, Properties and Applications
,
Cambridge University Press
,
New York
.10.1017/CBO9780511609701
4.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
(
6348
), pp.
56
58
.10.1038/354056a0
5.
Xie
,
R.
,
Zhang
,
C.
,
van der Veen
,
M. H.
,
Arstila
,
K.
,
Hantschel
,
T.
,
Chen
,
B.
,
Zhong
,
G.
, and
Robertson
,
J.
,
2013
, “
Carbon Nanotube Growth for Through Silicon Via Application
,”
Nanotechnology
,
24
(
12
), p.
125603
.10.1088/0957-4484/24/12/125603
6.
Hierold
,
C.
,
Brand
,
O.
,
Fedder
,
G.
,
Korvink
,
J.
, and
Tabata
,
O.
,
2008
,
Carbon Nanotube Devices: Properties, Modeling, Integration and Applications
,
John Wiley & Sons, Inc.
,
New York
.
7.
Wang
,
T.
,
Jeppson
,
K.
,
Ye
,
L.
, and
Liu
,
J.
,
2011
, “
Carbon-Nanotube Through-Silicon Via Interconnects for Three-Dimensional Integration
,”
Small
,
7
(
16
), pp.
2313
2317
.10.1002/smll.201100615
8.
Wang
,
T.
,
Chen
,
S.
,
Jiang
,
D.
,
Fu
,
Y.
,
Jeppson
,
K.
,
Ye
,
L.
, and
Liu
,
J.
,
2012
, “
Through-Silicon Vias Filled With Densified and Transferred Carbon Nanotube Forests
,”
IEEE Electron Device Lett.
,
33
(
3
), pp.
420
422
.10.1109/LED.2011.2177804
9.
Aryasomayajula
,
L.
, and
Wolter
,
K.
,
2013
, “
Carbon Nanotube Composites for Electronic Packaging Applications: A Review
,”
J. Nanotechnol.
,
2013
, p.
269517
.10.1155/2013/296517
10.
Liu
,
P.
,
Xu
,
D.
,
Li
,
Z.
,
Zhao
,
B.
,
Kong
,
E. S.-W.
, and
Zhang
,
Y.
,
2008
, “
Fabrication of CNTs/Cu Composite Thin Films for Interconnects Application
,”
Microelectron. Eng.
,
85
(
10
), pp.
1984
1987
.10.1016/j.mee.2008.04.046
11.
Chowdhury
,
T.
, and
Rohan
,
J.
,
2010
, “
Influence of Carbon Nanotubes on the Electrodeposition of Copper Interconnects
,”
ECS Trans.
,
25
(
38
), pp.
37
46
.10.1149/1.3390656
12.
Awad
,
I.
, and
Ladani
,
L.
,
2014
, “
Interfacial Strength Between Single Wall Carbon Nanotubes and Copper Material: Molecular Dynamics Simulation
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
4
), p.
041002
.10.1115/1.4026939
13.
Jiang
,
L. Y.
,
Huang
,
Y.
,
Jiang
,
H.
,
Ravichandran
,
G.
,
Gao
,
H.
,
Hwang
,
K. C.
, and
Liu
,
B.
,
2006
, “
A Cohesive Law for Carbon Nanotube/Polymer Interfaces Based on the van der Waals Force
,”
J. Mech. Phys. Solids
,
54
(
11
), pp.
2436
2452
.10.1016/j.jmps.2006.04.009
14.
Tan
,
H.
,
Jiang
,
L. Y.
,
Huang
,
Y.
,
Liu
,
B.
, and
Hwang
,
K. C.
,
2007
, “
The Effect of van der Waals-Based Interface Cohesive Law on Carbon Nanotube-Reinforced Composite Materials
,”
Compos. Sci. Technol.
,
67
(
14
), pp.
2941
2946
.10.1016/j.compscitech.2007.05.016
15.
Samuel
,
J.
, and
Kapoor
,
S.
,
2014
, “
Estimating the Cohesive Zone Model Parameters of Carbon Nanotube–Polymer Interface for Machining Simulations
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031004
.10.1115/1.4024941
16.
Namilae
,
S.
, and
Chandra
,
N.
,
2005
, “
Multiscale Model to Study the Effect of Interfaces in Carbon Nanotube-Based Composites
,”
ASME J. Eng. Mater. Technol.
,
127
(
2
), pp.
222
232
.10.1115/1.1857940
17.
Center for Atomic-Scale Materials Design
,
2012
,
Atomic Simulation Environment
, Technical University of Denmark, Lyngby, Denmark, UK.
18.
Jones
,
J. E.
,
1924
, “
On the Determination of Molecular Fields. II. From the Equation of State of a Gas
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
106
(
738
), pp.
463
477
.10.1098/rspa.1924.0082
19.
Acklandab
,
G. J.
,
Tichyc
,
G.
,
Vitek
,
V.
, and
Finnis
,
M. W.
,
1987
, “
Simple N-Body Potentials for the Noble Metals and Nickel
,”
Philos. Mag. A
,
56
(
6
), pp.
735
756
.10.1080/01418618708204485
20.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6485
.10.1063/1.481208
21.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys. Condens. Matter
,
14
(
4
), pp.
783
802
.10.1088/0953-8984/14/4/312
22.
Hartmann
,
S.
,
Hblck
,
O.
, and
Wunderle
,
B.
,
2013
, “
Molecular Dynamics Simulations for Mechanical Characterization of CNT IGoid Interface and Its Bonding Strength
,”
14th International Conference on Thermal
, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), pp.
1
8
.
23.
Liew
,
K.
,
Wong
,
C.
,
He
,
X.
,
Tan
,
M.
, and
Meguid
,
S.
,
2004
, “
Nanomechanics of Single and Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
,
69
(
11
), p.
115429
.10.1103/PhysRevB.69.115429
24.
Wong
,
C. H.
, and
Vijayaraghavan
,
V.
,
2012
, “
Nanomechanics of Nonideal Single- and Double-Walled Carbon Nanotubes
,”
J. Nanomater.
,
2012
, pp.
1
9
.10.1155/2012/490872
25.
Toprak
,
K.
, and
Bayazitoglu
,
Y.
,
2013
, “
Numerical Modeling of a CNT–Cu Coaxial Nanowire in a Vacuum to Determine the Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
61
, pp.
172
175
.10.1016/j.ijheatmasstransfer.2013.01.082
26.
Guo
,
Y.
, and
Guo
,
W.
,
2006
, “
Structural Transformation of Partially Confined Copper Nanowires Inside Defected Carbon Nanotubes
,”
Nanotechnology
,
17
(
18
), pp.
4726
4730
.10.1088/0957-4484/17/18/033
27.
Zhao
,
J.
,
Buldum
,
A.
,
Han
,
J.
, and
Lu
,
J.
,
2002
, “
Gas Molecule Adsorption in Carbon Nanotubes and Nanotube Bundles
,”
Nanotechnology
,
13
(2), pp.
195
200
.10.1088/0957-4484/13/2/312
28.
Volkov
,
A.
,
Salaway
,
R.
, and
Zhigilei
,
L.
,
2013
, “
Atomistic Simulations, Mesoscopic Modeling, and Theoretical Analysis of Thermal Conductivity of Bundles Composed of Carbon Nanotubes
,”
J. Appl. Phys.
,
114
, pp.
1
21
.10.1063/1.4819911
29.
Li
,
C.
,
Liu
,
Y.
,
Yao
,
X.
,
Ito
,
M.
,
Noguchi
,
T.
, and
Zheng
,
Q.
,
2010
, “
Interfacial Shear Strengths Between Carbon Nanotubes
,”
Nanotechnology
,
21
(
11
), p.
115704
.10.1088/0957-4484/21/11/115704
30.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
31.
Clausius
,
R.
,
1998
,
Physical Properties of Carbon Nanotubes
,
World Scientific Publishing Company
,
London, UK
.
32.
Maxwell
,
J. C.
,
2013
, “
On Reciprocal Figures, Frames, and Diagrams of Forces
,”
Trans. R. Soc. Edinburgh
,
26
(
1
), pp.
1
40
.10.1017/S0080456800026351
33.
Swenson
,
R. J.
,
1983
, “
Comments on Virial Theorems for Bounded Systems
,”
Am. J. Phys.
,
51
(
10
), pp.
940
942
.10.1119/1.13390
34.
Tsai
,
D. H.
,
1979
, “
The Virial Theorem and Stress Calculation in Molecular Dynamics
,”
J. Chem. Phys.
,
70
(
3
), pp.
1375
1382
.10.1063/1.437577
35.
Andia
,
P. C.
,
Costanzo
,
F.
, and
Gray
,
G. L.
,
2006
, “
A Classical Mechanics Approach to the Determination of the Stress–Strain Response of Particle Systems
,”
Modell. Simul. Mater. Sci. Eng.
,
14
(
4
), pp.
741
757
.10.1088/0965-0393/14/4/015
36.
Costanzo
,
F.
,
Gray
,
G.
, and
Andia
,
P.
,
2005
, “
On the Definitions of Effective Stress and Deformation Gradient for Use in MD: Hill's Macro-Homogeneity and the Virial Theorem
,”
Int. J. Eng.
,
43
(
7
), pp.
533
555
.10.1016/j.ijengsci.2004.12.002
37.
Zhou
,
M.
,
2003
, “
A New Look at the Atomic Level Virial Stress: On Continuum-Molecular System Equivalence
,”
Proc. R. Soc.
,
459
(
2037
), pp.
2437
2392
.10.1098/rspa.2003.1127
38.
Shen
,
S.
, and
Atluri
,
S.
,
2004
, “
Atomic-Level Stress Calculation and Continuum-Molecular System Equivalence
,”
Comput. Model. Eng.
,
6
(
1
), pp.
91
104
.10.1098/rspa.2003.1127
39.
Sun
,
Z. H.
,
Wang
,
X. X.
,
Soh
,
A. K.
, and
Wu
,
H. A.
,
2006
, “
On Stress Calculations in Atomistic Simulations
,”
Modell. Simul. Mater. Sci. Eng.
,
14
(
3
), pp.
423
431
.10.1088/0965-0393/14/3/006
40.
Tschopp
,
M.
,
2007
, “
Atomistic Simulations of Homogeneous Dislocation Nucleation in Single Crystal Copper
,”
Modell. Simul. Mater. Sci. Eng.
,
15
, pp.
693
709
.10.1088/0965-0393/15/7/001
41.
Yang
,
Z.
,
Zhou
,
Y.
,
Wang
,
T.
,
Liu
,
Q.
, and
Lu
,
Z.
,
2014
, “
Crack Propagation Behaviors at Cu/SiC Interface by Molecular Dynamics Simulation
,”
Comput. Mater. Sci.
,
82
, pp.
17
25
.10.1016/j.commatsci.2013.09.029
42.
Subramaniyan
,
A.
, and
Sun
,
C.
,
2008
, “
Continuum Interpretation of Virial Stress in Molecular Simulations
,”
Int. J. Solids Struct.
,
45
(
14–15
), pp.
4340
4346
.10.1016/j.ijsolstr.2008.03.016
43.
Gao
,
J.
, and
Weiner
,
J. H.
,
1987
, “
Excluded-Volume Effects in Rubber Elasticity. 1. Virial Stress Formulation
,”
Macromolecules
,
20
(
10
), pp.
2520
2525
.10.1021/ma00176a034
44.
Barenblatt
,
G.
,
1959
, “
The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypotheses. Axially-Symmetric Cracks
,”
J. Appl. Math. Mech.
,
23
(
3
), pp.
622
636
.10.1016/0021-8928(59)90157-1
45.
IBM, spss.
You do not currently have access to this content.