Increased ignition probabilities of ethanol are found on a heated hot-plate with the introduction of Al2O3, Fe3O4, and carbon nanotube (CNT) nanoparticle suspensions. We show that the mechanism is probably due to liquid fuel boiling point elevation caused by nanoparticle accumulation at liquid–vapor interfaces. The magnitudes of this impact are related to the number and geometry of nanoparticles but independent from the nanoparticle chemical compositions. These findings may have important applications for developing future alternative liquid fuels with advanced combustion characteristics.

References

References
1.
Szuromi
,
P.
,
Jasny
,
B.
,
Clery
,
D.
,
Austin
,
J.
, and
Hanson
,
B.
,
2007
, “
Energy for the Long Haul
,”
Science
,
315
(
5813
), p. 781.10.1126/science.315.5813.781
2.
Hill
,
J.
,
Nelson
,
E.
,
Tilman
,
D.
,
Polasky
,
S.
, and
Tiffany
,
D.
,
2006
, “
Environmental, Economic, and Energetic Costs and Benefits of Biodiesel and Ethanol Biofuels
,”
Proc. Natl. Acad. Sci.
,
103
(
30
), pp.
11206
11210
.10.1073/pnas.0604600103
3.
Yetter
,
R. A.
,
Risha
,
G. A.
, and
Son
,
S. F.
,
2009
, “
Metal Particle Combustion and Nanotechnology
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1819
1838
.10.1016/j.proci.2008.08.013
4.
Dreizin
,
E. L.
,
2009
, “
Metal-Based Reactive Nanomaterials
,”
Prog. Energy Combust. Sci.
,
35
(
2
), pp.
141
167
.10.1016/j.pecs.2008.09.001
5.
Granier
,
J.
,
Plantier
,
K.
, and
Pantoya
,
M.
,
2004
, “
The Role of the Al2O3 Passivation Shell Surrounding Nano-Al Particles in the Combustion Synthesis of NiAl
,”
J. Mater. Sci.
,
39
(
21
), pp.
6421
6431
.10.1023/B:JMSC.0000044879.63364.b3
6.
Gan
,
Y.
, and
Qiao
,
L.
,
2011
, “
Combustion Characteristics of Fuel Droplets With Addition of Nano and Micron-Sized Aluminum Particles
,”
Combust. Flame
,
158
(
2
), pp.
354
368
.10.1016/j.combustflame.2010.09.005
7.
Pantoya
,
M. L.
, and
Granier
,
J. J.
,
2005
, “
Combustion Behavior of Highly Energetic Thermites: Nano Versus Micron Composites
,”
Propellants, Explos., Pyrotech.
,
30
(
1
), pp.
53
62
.10.1002/prep.200400085
8.
Sajith
,
V.
,
Sobhan
,
C.
, and
Peterson
,
G.
,
2010
, “
Experimental Investigations on the Effects of Cerium Oxide Nanoparticle Fuel Additives on Biodiesel
,”
Adv. Mech. Eng.
,
2010
(58), p.
581407
.10.1155/2010/581407
9.
Tyagi
,
H.
,
Phelan
,
P. E.
,
Prasher
,
R.
,
Peck
,
R.
,
Lee
,
T.
,
Pacheco
,
J. R.
, and
Arentzen
,
P.
,
2008
, “
Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel
,”
Nano Lett.
,
8
(
5
), pp.
1410
1416
.10.1021/nl080277d
10.
Jones
,
M.
,
Li
,
C. H.
,
Afjeh
,
A.
, and
Peterson
,
G.
,
2011
, “
Experimental Study of Combustion Characteristics of Nanoscale Metal and Metal Oxide Additives in Biofuel (Ethanol)
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
12
.10.1186/1556-276X-6-246
11.
Sabourin
,
J. L.
,
Dabbs
,
D. M.
,
Yetter
,
R. A.
,
Dryer
,
F. L.
, and
Aksay
,
I. A.
,
2009
, “
Functionalized Graphene Sheet Colloids for Enhanced Fuel/Propellant Combustion
,”
ACS Nano
,
3
(
12
), pp.
3945
3954
.10.1021/nn901006w
12.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2005
, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
,
94
(
2
), p.
025901
.10.1103/PhysRevLett.94.025901
13.
Choi
,
S.
,
Zhang
,
Z.
,
Yu
,
W.
,
Lockwood
,
F.
, and
Grulke
,
E.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
), pp.
2252
2254
.10.1063/1.1408272
14.
Xie
,
H.
,
Lee
,
H.
,
Youn
,
W.
, and
Choi
,
M.
,
2003
, “
Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities
,”
J. Appl. Phys.
,
94
(
8
), pp.
4967
4971
.10.1063/1.1613374
15.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5181
5188
.10.1016/j.ijheatmasstransfer.2004.07.012
16.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.10.1115/1.1532008
17.
Tyagi
,
H.
,
Phelan
,
P.
, and
Prasher
,
R.
,
2007
, “
Predicted Efficiency of a Nanofluid-Based Direct Absorption Solar Receiver
,”
ASME 2007 Energy Sustainability Conference
,
ASME
Paper No. ES2007-36139.10.1115/ES2007-36139
18.
Krishnamurthy
,
S.
,
Bhattacharya
,
P.
,
Phelan
,
P.
, and
Prasher
,
R.
,
2006
, “
Enhanced Mass Transport in Nanofluids
,”
Nano Lett.
,
6
(
3
), pp.
419
423
.10.1021/nl0522532
19.
Ozturk
,
S.
,
Hassan
,
Y. A.
, and
Ugaz
,
V. M.
,
2010
, “
Interfacial Complexation Explains Anomalous Diffusion in Nanofluids
,”
Nano Lett.
,
10
(
2
), pp.
665
671
.10.1021/nl903814r
20.
Wasan
,
D. T.
, and
Nikolov
,
A. D.
,
2003
, “
Spreading of Nanofluids on Solids
,”
Nature
,
423
(
6936
), pp.
156
159
.10.1038/nature01591
21.
Pauliac-Vaujour
,
E.
,
Stannard
,
A.
,
Martin
,
C.
,
Blunt
,
M. O.
,
Notingher
,
I.
,
Moriarty
,
P.
,
Vancea
,
I.
, and
Thiele
,
U.
,
2008
, “
Fingering Instabilities in Dewetting Nanofluids
,”
Phys. Rev. Lett.
,
100
(
17
), p.
176102
.10.1103/PhysRevLett.100.176102
22.
You
,
S.
,
Kim
,
J.
, and
Kim
,
K.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.10.1063/1.1619206
23.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
24.
Wheeler
,
A. J.
, and
Ganji
,
A.
,
2004
,
Engineering Experimentation
,
Pearson Education
,
Upper Saddle River, NJ
.
25.
Biance
,
A.-L.
,
Clanet
,
C.
, and
Quéré
,
D.
,
2003
, “
Leidenfrost Drops
,”
Phys. Fluids
,
15
(
6
), pp.
1632
1637
.10.1063/1.1572161
26.
Myers
,
T.
, and
Charpin
,
J.
,
2009
, “
A Mathematical Model of the Leidenfrost Effect on an Axisymmetric Droplet
,”
Phys. Fluids
,
21
(6), p.
063101
.10.1063/1.3155185
27.
Kays
,
W.
, and
Crawford
,
M.
,
1993
,
Convection Heat Transfer
,
McGraw-Hill
,
New York
.
28.
Bigioni
,
T. P.
,
Lin
,
X.-M.
,
Nguyen
,
T. T.
,
Corwin
,
E. I.
,
Witten
,
T. A.
, and
Jaeger
,
H. M.
,
2006
, “
Kinetically Driven Self Assembly of Highly Ordered Nanoparticle Monolayers
,”
Nat. Mater.
,
5
(
4
), pp.
265
270
.10.1038/nmat1611
29.
Rabani
,
E.
,
Reichman
,
D. R.
,
Geissler
,
P. L.
, and
Brus
,
L. E.
,
2003
, “
Drying-Mediated Self-Assembly of Nanoparticles
,”
Nature
,
426
(
6964
), pp.
271
274
.10.1038/nature02087
30.
Moore
,
W. J.
,
1972
,
Physical Chemistry
,
Prentice-Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.