Ocular drug delivery is a complex and challenging process and understanding the transport characteristics of drug-loaded particles is very important for designing safe and effective ocular drug delivery devices. In this paper, we investigated the effect of the microchannel configuration of the microdevice, the size of drug-loaded nanoparticles (NPs), and the pressure gradient of fluid flow in determining the maximum number of NPs within a certain outlet region and transportation time of drug particles. We employed a hybrid computational approach that combines the lattice Boltzmann model for fluids with the Brownian dynamics model for NPs transport. This hybrid approach allows to capture the interactions among the fluids, NPs, and barriers of microchannels. Our results showed that increasing the pressure gradient of fluid flow in a specific type of microchannel configuration (tournament configuration) effectively decreased the maximum number of NPs within a certain outlet region as well as transportation time of the drug loaded NPs. These results have important implications for the design of ocular drug delivery devices. These findings may be particularly helpful in developing design and transport optimization guidelines related to creating novel microchannel configurations for ocular drug delivery devices.

References

References
1.
Geroski
,
D. H.
, and
Edelhauser
,
H. F.
,
2000
, “
Drug Delivery for Posterior Segment Eye Disease
,”
Invest. Ophthalmol. Vis. Sci.
,
41
(
5
), pp.
961
964
.
2.
Gaudana
,
R.
,
Jwala
,
J.
,
Boddu
,
S. H. S.
, and
Mitra
,
A. K.
,
2009
, “
Recent Perspectives in Ocular Drug Delivery
,”
Pharm. Res.
,
26
(
5
), pp.
1197
1216
.10.1007/s11095-008-9694-0
3.
Gaudana
,
R.
,
Krishna
,
H.
,
Parenky
,
A.
, and
Mitra
,
A.
,
2010
, “
Ocular Drug Delivery
,”
AAPS J.
,
12
(
3
), pp.
348
360
.10.1208/s12248-010-9183-3
4.
Thrimawithana
,
T. R.
,
Young
,
S.
,
Bunt
,
C. R.
,
Green
,
C.
, and
Alany
,
R. G.
,
2011
, “
Drug Delivery to the Posterior Segment of the Eye
,”
Drug Discov. Today
,
16
(
5–6
), pp.
270
277
.10.1016/j.drudis.2010.12.004
5.
Lo
,
R.
,
Li
,
P. Y.
,
Saati
,
S.
,
Agrawal
,
R. N.
,
Humayun
,
M. S.
, and
Meng
,
E.
,
2009
, “
A Passive MEMS Drug Delivery Pump for Treatment of Ocular Diseases
,”
Biomed. Microdevices
,
11
(
5
), pp.
959
970
.10.1007/s10544-009-9313-9
6.
Staples
,
M.
,
Daniel
,
K.
,
Cima
,
M. J.
, and
Langer
,
R.
,
2006
, “
Application of Micro- and Nano-Electromechanical Devices to Drug Delivery
,”
Pharm. Res.
,
23
(
5
), pp.
847
863
.10.1007/s11095-006-9906-4
7.
Saati
,
S.
,
Lo
,
R.
,
Li
,
P. Y.
,
Meng
,
E.
,
Varma
,
R.
, and
Humayun
,
M. S.
,
2010
, “
Mini Drug Pump for Ophthalmic Use
,”
Curr. Eye Res.
,
35
(
3
), pp.
192
201
.10.3109/02713680903521936
8.
Amrite
,
A. C.
,
Edelhauser
,
H. F.
,
Singh
,
S. R.
, and
Kompella
,
U. B.
,
2008
, “
Effect of Circulation on the Disposition and Ocular Tissue Distribution of 20 nm Nanoparticles After Periocular Administration
,”
Mol. Vis.
,
14
, pp.
150
160
.
9.
Lee
,
J. H.
,
Pidaparti
,
R. M.
,
Atkinson
,
G. M.
, and
Moorthy
,
R. S.
,
2012
, “
Design of an Implantable Device for Ocular Drug Delivery
,”
J. Drug Delivery
,
2012
, p.
527516
.10.1155/2012/527516
10.
Verberg
,
R.
,
Yeomans
,
J. M.
, and
Balazs
,
A. C.
,
2005
, “
Modeling the Flow of Fluid/Particle Mixtures in Microchannels: Encapsulating Nanoparticles Within Monodisperse Droplets
,”
J. Chem. Phys.
,
123
(
22
), p.
224706
.10.1063/1.2133733
11.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
,
Oxford University
,
Oxford
, UK.
12.
Allen
,
T. M.
, and
Cullis
,
P. R.
,
2004
, “
Drug Delivery System: Entering the Mainstream
,”
Science
,
303
(
5665
), pp.
1818
1822
.10.1126/science.1095833
13.
Brigger
,
I.
,
Dubernet
,
C.
, and
Couvreur
,
P.
,
2002
, “
Nanoparticles in Cancer Therapy and Diagnosis
,”
Adv. Drug Delivery Rev.
,
54
(
5
), pp.
631
651
.10.1016/S0169-409X(02)00044-3
14.
Sakurai
,
E.
,
Ozeki
,
H.
,
Kunou
,
N.
, and
Ogura
,
Y.
,
2001
, “
Effect of Particle Size of Polymeric Nanospheres on Intravitreal Kinetics
,”
Ophthalmic Res.
,
33
(
1
), pp.
31
36
.10.1159/000055638
15.
Sakai
,
T.
,
Kuno
,
N.
,
Takamatsu
,
F.
,
Kimura
,
E.
,
Kohno
,
H.
,
Okano
,
K.
, and
Kitahara
,
K.
,
2007
, “
Prolonged Protective Effect of Basic Fibroblast Growth Factor-Impregnated Nanoparticles in Royal College of Surgeons Rats
,”
Invest. Ophthalmol. Vis. Sci.
,
48
(
7
), pp.
3381
3387
.10.1167/iovs.06-1242
16.
Bourges
,
J.
,
Gautier
,
S. E.
,
Delie
,
F.
,
Bejjani
,
R. A.
,
Jeanny
,
J.
,
Gurny
,
R.
,
BenEzra
,
D.
, and
Behar-Coben
,
F. F.
,
2003
, “
Ocular Drug Delivery Targeting the Retina and Retinal Pigment Epithelium Using Polylactide Nanoparticles
,”
Invest. Ophthalmol. Vis. Sci.
,
44
(
8
), pp.
3562
3569
.10.1167/iovs.02-1068
17.
Alexeev
,
A.
,
Verberg
,
R.
, and
Balazs
,
A. C.
,
2005
, “
Modeling the Motion of Microcapsules on Compliant Polymeric Surfaces
,”
Macromolecules
,
38
(
24
), pp.
10244
10260
.10.1021/ma0516135
18.
Ma
,
Y. T.
,
Bhattacharya
,
A.
,
Kuksenok
,
O.
,
Perchak
,
D.
, and
Balaza
,
A. C.
,
2012
, “
Modeling the Transport of Nanoparticle-Filled Binary Fluids Through Micropores
,”
Langmuir
,
28
(
31
), pp.
11410
11421
.10.1021/la301676f
19.
Gorrasi
,
G.
,
Tammaro
,
L.
,
Vittoria
,
V.
,
Paul
,
M.
,
Alexandre
,
M.
, and
Dubois
,
P.
,
2004
, “
Transport Properties of Water Vapor in Polylactide/Montmorillonite Nanocomposites
,”
J. Macromol. Sci.
,
43
(
3
), pp.
565
575
.10.1081/MB-120030006
You do not currently have access to this content.