Several chemical methods for the separation of nanoparticles from a colloidal mixture in a phase change material (PCM) have been developed and systematically investigated. The phase changing property of the colloidal mixture is used in energy storage applications and the mixture is labeled as the nanostructure enhanced phase change materials (NEPCM). The objective is to investigate viable methods for the separation and reclamation of the nanoparticles from the NEPCM before its disposal after its useful life. The goal is to find, design, test, and evaluate separation methods which are simple, safe, effective, and economical. The specific NEPCM considered in this study is a colloidal mixture of dodecane (C12H26) and CuO nanoparticles of 1–5% mass fraction and 5–15 nm size distribution. The nanoparticles are coated with a surfactant to maintain colloidal stability. Various methods for separating the nanoparticles from the NEPCM are explored. The identified methods are: (i) chemical destabilization of nanoparticle surfactants to facilitate gravitational precipitation, (ii) silica column chromatography, and (iii) adsorption on silica particle surface. These different methods have been pursued, tested, and analyzed; and the results are presented in this article. These methods are found to be highly efficient, simple, safe, and economical.

References

References
1.
Nomura
,
T.
,
Okinaka
,
N.
, and
Akiyama
,
T.
,
2009
, “
Impregnation of Porous Material With Phase Change Material for Thermal Energy Storage
,”
Mater. Chem. Phys.
,
115
(
2–3
), pp.
846
850
.10.1016/j.matchemphys.2009.02.045
2.
Kuznik
,
F.
,
David
,
D.
,
Johannes
,
K.
, and
Roux
,
J.
,
2011
, “
A Review on Phase Change Materials Integrated in Building Walls
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
379
391
.10.1016/j.rser.2010.08.019
3.
Meng
,
Q.
, and
Hu
,
J.
,
2008
, “
A Poly(Ethylene Glycol)-Based Smart Phase Change Material
,”
Sol. Energy Mater. Sol. Cells
,
92
(
10
), pp.
1260
1268
.10.1016/j.solmat.2008.04.026
4.
Liu
,
M.
,
Saman
,
W.
, and
Bruno
,
F.
,
2012
, “
Review on Storage Materials and Thermal Performance Enhancement Techniques for High Temperature Phase Change Thermal Storage Systems
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
2118
2132
.10.1016/j.rser.2012.01.020
5.
Khodadadi
,
J. M.
,
Fan
,
L.
, and
Babaei
,
H.
,
2013
, “
Thermal Conductivity Enhancement of Nanostructure-Based Colloidal Suspensions Utilized as Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
418
444
.10.1016/j.rser.2013.03.031
6.
Fan
,
L.
, and
Khodadadi
,
J. M.
,
2011
, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
.10.1016/j.rser.2010.08.007
7.
Gunawan
,
C.
,
Teoh
,
W. Y.
,
Marquis
,
C. P.
, and
Amal
,
R.
,
2011
, “
Cytotoxic Origin of Copper(II) Oxide Nanoparticles: Comparative Studies With Micron-Sized Particles, Leachate, and Metal Salts
,”
ACS Nano
,
5
(
9
), pp.
7214
7225
.10.1021/nn2020248
8.
Heinlaan
,
M.
,
Kahru
,
A.
,
Kasemets
,
K.
,
Arbeille
,
B.
,
Prensier
,
G.
, and
Dubourguier
,
H.
,
2011
, “
Changes in the Daphnia Magna Midgut Upon Ingestion of Copper Oxide Nanoparticles: A Transmission Electron Microscopy Study
,”
Water Res.
,
45
(
1
), pp.
179
190
.10.1016/j.watres.2010.08.026
9.
Manusadžianas
,
L.
,
Caillet
,
C.
,
Fachetti
,
L.
,
Gylytė
,
B.
,
Grigutytė
,
R.
,
Jurkonienė
,
S.
,
Karitonas
,
R.
,
Sadauskas
,
K.
,
Thomas
,
F.
,
Vitkus
,
R.
, and
Férard
,
J. F.
,
2012
, “
Toxicity of Copper Oxide Nanoparticle Suspensions to Aquatic Biota
,”
Environ. Toxicol. Chem.
,
31
(
1
), pp.
108
114
.10.1002/etc.715
10.
Wang
,
Z.
,
Li
,
N.
,
Zhao
,
J.
,
White
,
J. C.
,
Qu
,
P.
, and
Xing
,
B.
,
2012
, “
CuO Nanoparticle Interaction With Human Epithelial Cells: Cellular Uptake, Location, Export, and Genotoxicity
,”
Chem. Res. Toxicol.
,
25
(
7
), pp.
1512
1521
.10.1021/tx3002093
11.
Liu
,
F. K.
,
Ko
,
F. H.
,
Huang
,
P. W.
,
Wu
,
C. H.
, and
Chu
,
T. C.
,
2005
, “
Studying the Size/Shape Separation and Optical Properties of Silver Nanoparticles by Capillary Electrophoresis
,”
J. Chromatogr. A
,
1062
(
1
), pp.
139
145
.10.1016/j.chroma.2004.11.010
12.
Lam
,
K. F.
,
Sorensen
,
E.
, and
Gavriilidis
,
A.
,
2011
, “
Towards an Understanding of the Effects of Operating Conditions on Separation by Microfluidic Distillation
,”
Chem. Eng. Sci.
,
66
(
10
), pp.
2098
2106
.10.1016/j.ces.2011.02.013
13.
Xiong
,
B.
,
Cheng
,
J.
,
Qiao
,
Y.
,
Zhou
,
R.
,
He
,
Y.
, and
Yeung
,
E. S.
,
2011
, “
Separation of Nanorods by Density Gradient Centrifugation
,”
J. Chromatogr. A
,
1218
(
25
), pp.
3823
3829
.10.1016/j.chroma.2011.04.038
14.
Chen
,
H.
,
Kaminski
,
M. D.
,
Ebner
,
A. D.
,
Ritter
,
J. A.
, and
Rosengart
,
A. J.
,
2007
, “
Theoretical Analysis of a Simple Yet Efficient Portable Magnetic Separator Design for Separation of Magnetic Nano/Micro-Carriers From Human Blood Flow
,”
J. Magn. Magn. Mater.
,
313
(
1
), pp.
127
134
.10.1016/j.jmmm.2006.12.015
15.
Liu
,
F.
,
2009
, “
Using Micellar Electrokinetic Chromatography for the Highly Efficient Preconcentration and Separation of Gold Nanoparticles
,”
J. Chromatogr. A
,
1216
(
12
), pp.
2554
2559
.10.1016/j.chroma.2009.01.004
16.
Van der Bruggen
,
B.
,
Mänttäri
,
M.
, and
Nyström
,
M.
,
2008
, “
Drawbacks of Applying Nanofiltration and How to Avoid Them: A Review
,”
Sep. Purif. Technol.
,
63
(
2
), pp.
251
263
.10.1016/j.seppur.2008.05.010
17.
Sheikh
,
M. H.
, and
Sharif
,
M. A. R.
,
2014
, “
Methods for Separation of Copper Oxide Nanoparticles From Colloidal Suspension in Dodecane
,”
ASME J. Nanotechnol. Eng. Med.
,
5
(
1
), p.
011002
.10.1115/1.4027219
18.
Vertellus
,
2005
, “
Material Safety Data
,” http://www.vertellus.com/Documents/MSDS/N-Dodecane%20English.pdf
19.
Clary
,
D. R.
, and
Mills
,
G.
,
2011
, “
Preparation and Thermal Properties of CuO Particles
,”
J. Phys. Chem. C
,
115
(
5
), pp.
1767
1775
.10.1021/jp110102r
20.
Gaborieau
,
M.
,
Nicolas
,
J.
,
Save
,
M.
,
Charleux
,
B.
,
Vairon
,
J.
,
Gilbert
,
R. G.
, and
Castignolles
,
P.
,
2008
, “
Separation of Complex Branched Polymers by Size-Exclusion Chromatography Probed With Multiple Detection
,”
J. Chromatogr. A
,
1190
(1–2)
, pp.
215
223
.10.1016/j.chroma.2008.03.031
21.
Bryant
,
C. H.
,
Adam
,
A.
,
Tayior
,
D. R.
, and
Rowe
,
R. C.
,
1994
, “
A Review of Expert Systems for Chromatography
,”
Anal. Chim. Acta
,
297
(
3
), pp.
317
347
.10.1016/0003-2670(94)00209-6
You do not currently have access to this content.