Lignin is a renewable material and it is abundantly available as low priced industrial residue. Lignin-based carbon fibers are economically attractive and sustainable. In addition, remarkably oxidized molecule of the lignin decreases the required time and temperature of the thermostabilization process compared to other carbon fiber precursors such as polyacrylonitrile (PAN); and thus, decreases the processing cost of carbon fiber production. The fraction 4 of softwood Kraft lignin (SKL-F4) was previously shown to be spinnable via electrospinning to produce carbon nanofibers. In this paper, we characterized different Kraft lignin powders through X-ray diffraction (XRD) analysis to measure the mean size of the ordered domains in different fractionations of softwood and hardwood samples. According to our results, SKL-F4 has largest ordered domains among SKLs and highest hydroxyl content according to Fourier transform infrared (FTIR) analysis. In addition, variations in the XRD patterns during carbon nanofiber formation were studied and the peak for (101) plane in graphite was observed in the carbon nanofiber carbonized at 1000 °C.

References

References
1.
Zakzeski
,
J.
,
Bruijnincx
,
P. C.
,
Jongerius
,
A. L.
, and
Weckhuysen
,
B. M.
,
2010
, “
The Catalytic Valorization of Lignin for the Production of Renewable Chemicals
,”
Chem. Rev.
,
110
(
6
), pp.
3552
3599
.10.1021/cr900354u
2.
Baker
,
D. A.
, and
Rials
,
T. G.
,
2013
, “
Recent Advances in Low-Cost Carbon Fiber Manufacture From Lignin
,”
J. Appl. Polym. Sci.
,
130
(
2
), pp.
713
728
.10.1002/app.39273
3.
Morgan
,
P.
,
2005
, “
Precursors for Carbon Fiber Manufacture
,”
Carbon Fibers and Their Composites
, Vol.
121
,
Taylor & Francis Group, LLC
,
Boca Raton, FL
.10.1201/9781420028744
4.
Hüttinger
,
K. J.
,
Figueiredo
,
J. L.
,
Bernardo
,
C. A.
,
Baker
,
R. T. K.
, and
Hüttinger
,
K. J.
,
1990
,
Carbon Fibers, Filaments and Composites
, Vol.
177
,
Springer
,
The Netherlands
.
5.
Frank
,
E.
,
Hermanutz
,
F.
, and
Buchmeiser
,
M. R.
,
2012
, “
Carbon Fibers: Precursors, Manufacturing, and Properties
,”
Macromol. Mater. Eng.
,
297
(
6
), pp.
493
501
.10.1002/mame.201100406
6.
Boehm
,
H. P.
,
1994
, “
Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons
,”
Carbon
,
32
(
5
), pp.
759
769
.10.1016/0008-6223(94)90031-0
7.
Kadla
,
J. F.
,
Kubo
,
S.
,
Gilbert
,
R. D.
, and
Venditti
,
R. A.
,
2002
, “
Lignin-Based Carbon Fibers
,”
Chemical Modification, Properties, and Usage of Lignin
,
Springer
,
New York
, pp.
121
137
.
8.
Kubo
,
S.
, and
Kadla
,
J. F.
,
2006
, “
Carbon Fibers From Lignin-Recyclable Plastic Blends
,”
Encyclopedia of Chemical Processing
,
Taylor & Francis
,
UK
, pp.
317
331
.
9.
Broughton
,
J. R., R. M.
, and
Brady
,
P.
,
1995
, “
Fiber Forming Polymers
,”
Wellington Sears Handbook of Industrial Textiles
, Vol.
31
, CRC Press.
10.
Baker
,
D. A.
,
Gallego
,
N. C.
, and
Baker
,
F. S.
,
2012
, “
On the Characterization and Spinning of an Organic ‐Purified Lignin Toward the Manufacture of Low‐Cost Carbon Fiber
,”
J. Appl. Polym. Sci.
,
124
(
1
), pp.
227
234
.10.1002/app.33596
11.
Maradur
,
S. P.
,
Kim
,
C. H.
,
Kim
,
S. Y.
,
Kim
,
B. H.
,
Kim
,
W. C.
, and
Yang
,
K. S.
,
2012
, “
Preparation of Carbon Fibers From a Lignin Copolymer with Polyacrylonitrile
,”
Synth. Met.
,
162
(
5
), pp.
453
459
.10.1016/j.synthmet.2012.01.017
12.
Kadla
,
J. F.
,
Kubo
,
S.
,
Venditti
,
R. A.
,
Gilbert
,
R. D.
,
Compere
,
A. L.
, and
Griffith
,
W.
,
2002
, “
Lignin-Based Carbon Fibers for Composite Fiber Applications
,”
Carbon
,
40
(
15
), pp.
2913
2920
.10.1016/S0008-6223(02)00248-8
13.
Kadla
,
J. F.
, and
Kubo
,
S.
,
2004
, “
Lignin-Based Polymer Blends: Analysis of Intermolecular Interactions in Lignin–Synthetic Polymer Blends
,”
Composites Part A
,
35
(
3
), pp.
395
400
.10.1016/j.compositesa.2003.09.019
14.
Kubo
,
S.
,
Uraki
,
Y.
, and
Sano
,
Y.
,
1996
, “
Thermomechanical Analysis of Isolated Lignins
,”
Holzforschung
,
50
(
2
), pp.
144
150
.10.1515/hfsg.1996.50.2.144
15.
Kubo
,
S.
, and
Kadla
,
J. F.
,
2005
, “
Lignin-Based Carbon Fibers: Effect of Synthetic Polymer Blending on Fiber Properties
,”
J. Polym. Environ.
,
13
(2)
, pp.
97
105
.10.1007/s10924-005-2941-0
16.
Compere
,
A. L.
,
Griffth
,
W. L.
,
Leitten
,
C. F.
, Jr.
, and
Pickel
,
J. M.
,
2005
, “
Evaluation of Lignin From Alkaline-Pulped Hardwood Black Liquor
,” http://www.ornl.gov/info/reports/2005/3445605475900.pdf
17.
Wahyuni
,
E. T.
,
Kunarti
,
E. S.
, and
Sugiharto
,
E.
, “
Performance of TiO2 Nanoparticle Prepared on Lignin Structure as Photocatalyst for Hazardous Mercury Removal Through Photoreduction Mechanism
,” Available at http://mipa.ugm.ac.id/web/files/publikasi/paper-endangtw.pdf
18.
Kubo
,
S.
,
Yasumitsu
,
U.
, and
Yoshihiro
,
S.
,
2003
, “
Catalytic Graphitization of Hardwood Acetic Acid Lignin With Nickel Acetate
,”
J. Wood Sci.
,
49
(
2
), pp.
188
192
.10.1007/s100860300030
19.
Ansari
,
K. B.
, and
Gaikar
,
V. G.
,
2013
, “
Green Hydrotropic Extraction Technology for Delignification of Sugarcane Bagasse by Using Alkybenzene Sulfonates as Hydrotropes
,”
Chem. Eng. Sci.
, pp.
157
166
.
20.
Brodin
,
I.
,
Sjöholm
,
E.
, and
Gellerstedt
,
G.
,
2009
, “
Kraft Lignin as Feedstock for Chemical Products: The Effects of Membrane Filtration
,”
Holzforschung
,
63
(
3
), pp.
290
297
.10.1515/HF.2009.049
21.
Wallberg
,
O.
,
Jönsson
,
A. S.
, and
Wimmerstedt
,
R.
,
2003
, “
Fractionation and Concentration of Kraft Black Liquor Lignin With Ultrafiltration
,”
Desalination
,
154
(
2
), pp.
187
199
.10.1016/S0011-9164(03)80019-X
22.
Dallmeyer
,
J. I.
,
2013
, “
Preparation and Characterization of Lignin Nanofibre-Based Materials Obtained by Electrostatic Spinning
,” Ph.D. thesis, https://circle.ubc.ca/bitstream/./ubc_2013_spring_dallmeyer_james.pdf
23.
Laurichesse
,
S.
, and
Avérous
,
L.
,
2014
, “
Chemical Modification of Lignins: Towards Biobased Polymers
,”
Prog. Polym. Sci
,
39
, pp.
1266
1290
.10.1016/j.progpolymsci.2013.11.004
24.
Bugg
,
T. D.
,
Ahmad
,
M.
,
Hardiman
,
E. M.
, and
Rahmanpour
,
R.
,
2011
, “
Pathways for Degradation of Lignin in Bacteria and Fungi
,”
Nat. Prod. Rep.
,
28
(
12
), pp.
1883
1896
.10.1039/c1np00042j
25.
Popescu
,
C. M.
,
Singurel
,
G.
,
Popescu
,
M. C.
,
Vasile
,
C.
,
Argyropoulos
,
D. S.
, and
Willför
,
S.
,
2009
, “
Vibrational Spectroscopy and X-ray Diffraction Methods to Establish the Differences Between Hardwood and Softwood
,”
Carbohydr. Polym.
,
77
(
4
), pp.
851
857
.10.1016/j.carbpol.2009.03.011
26.
Huang
,
Y.
,
Wang
,
L.
,
Chao
,
Y.
,
Nawawi
,
D. S.
,
Akiyama
,
T.
,
Yokoyama
,
T.
, and
Matsumoto
,
Y.
,
2012
, “
Analysis of Lignin Aromatic Structure in Wood Based on the IR Spectrum
,”
J. Wood Chem. Technol.
,
32
(
4
), pp.
294
303
.10.1080/02773813.2012.666316
27.
Boeriu
,
C. G.
,
Bravo
,
D.
,
Gosselink
,
R. J.
, and
van Dam
,
J. E.
,
2004
, “
Characterisation of Structure-Dependent Functional Properties of Lignin With Infrared Spectroscopy
,”
Ind. Crops Prod.
,
20
(
2
), pp.
205
218
.10.1016/j.indcrop.2004.04.022
28.
Kumar
,
S.
,
Negi
,
Y. S.
, and
Upadhyaya
,
J. S.
,
2010
, “
Studies on Characterization of Corn Cob Based Nanoparticles
,”
Adv. Mater. Lett.
,
1
(
3
), pp.
246
253
.10.5185/amlett.2010.9164
29.
Monshi
,
A.
,
Foroughi
,
M. R.
, and
Monshi
,
M. R.
,
2012
, “
Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD
,”
World J. Nano Sci. Eng.
,
2
, pp.
154
160
.10.4236/wjnse.2012.23020
30.
Cullity
,
B. D.
,
1957
, “
Elements of X-ray Diffraction
,”
Am. J. Phys.
,
25
(6)
, pp.
394
395
.10.1119/1.1934486
31.
Russ
,
J. C.
,
1984
,
Fundamentals of Energy Dispersive X-Ray Analysis
,
Butterworths
,
London, UK
.
32.
Chen
,
S.
,
He
,
G.
,
Carmona-Martinez
,
A. A.
,
Agarwal
,
S.
,
Greiner
,
A.
,
Hou
,
H.
, and
Schröder
,
U.
,
2011
, “
Electrospun Carbon Fiber Mat With Layered Architecture for Anode in Microbial Fuel Cells
,”
Electrochem. Commun.
,
13
(
10
), pp.
1026
1029
.10.1016/j.elecom.2011.06.009
33.
Im
,
J. S.
,
Kim
,
M. I.
, and
Lee
,
Y. S.
,
2008
, “
Preparation of PAN-Based Electrospun Nanofiber Webs Containing TiO2 for Photocatalytic Degradation
,”
Mater. Lett.
,
62
(
21
), pp.
3652
3655
.10.1016/j.matlet.2008.04.019
34.
Hwang
,
T. H.
,
Jung
,
D. S.
,
Kim
,
J. S.
,
Kim
,
B. G.
, and
Choi
,
J. W.
,
2013
, “
One-Dimensional Carbon–Sulfur Composite Fibers for Na–S Rechargeable Batteries Operating at Room Temperature
,”
Nano Lett.
,
13
(
9
), pp.
4532
4538
.10.1021/nl402513x
You do not currently have access to this content.