Biological materials such as bone have microstructure that incorporates a presence of a significant number of interfaces in a hierarchical manner that lead to a unique combination of properties such as toughness and hardness. However, studies regarding the influence of structural hierarchy in such materials on their physical properties such as thermal conductivity and its correlation with mechanical stress are limited. Such studies can point out important insights regarding the role of biological structural hierarchy in influencing multiphysical properties of materials. This work presents an analytic-experimental approach to establish stress–thermal conductivity correlation in bovine cortical bone as a function of nanomechanical compressive stress changes using Raman thermometry. Analyzes establish empirical relations between Raman shift and temperature as well as a relation between Raman shift and nanomechanical compressive stress. Analyzes verify earlier reported thermal conductivity results at 0% strain and at room temperature in the case of bovine cortical bone. In addition, measured trends and established thermal conductivity–stress relation indicates that the thermal conductivity values increase up to a threshold compressive stress value. On increasing stress beyond the threshold value, the thermal conductivity decreases as a function of increase in compressive strain. Interface reorganization versus interface related phonon wave blocking are the two competing mechanisms highlighted to affect such trend.

References

References
1.
Jaasma
,
M. J.
,
Bayraktar
,
H. H.
,
Niebur
,
G. L.
, and
Keaveny
,
T. M.
,
2002
, “
Biomechanical Effects of Intraspecimen Variations in Tissue Modulus for Trabecular Bone
,”
J. Biomech.
,
35
(
2
), pp.
237
246
.10.1016/S0021-9290(01)00193-2
2.
Peterlik
,
H.
,
Roschger
,
P.
,
Klaushofer
,
K.
, and
Frantzl
,
P.
,
2006
, “
From Brittle to Ductile Fracture of Bone
,”
Nature Mater.
,
5
(
1
), pp.
52
55
.10.1038/nmat1545
3.
Thurnera
,
P. J.
,
Ericksona
,
B.
,
Jungmanna
,
R.
,
Schriocka
,
Z.
,
Weaverb
,
J. C.
,
Fantnera
,
G. E.
,
Schittera
,
G.
,
Morseb
,
D. E.
, and
Hansmaa
,
P. K.
,
2007
, “
High-Speed Photography of Compressed Human Trabecular Bone Correlates Whitening to Microscopic Damage
,”
Eng. Fract. Mech.
,
74
(
12
), pp.
1928
1941
.10.1016/j.engfracmech.2006.05.024
4.
Gan
,
M.
,
Samvedi
,
V.
,
Cerrone
,
A.
,
Dubey
,
D. K.
, and
Tomar
,
V.
,
2010
, “
Effect of Compressive Straining on Nanoindentation Elastic Modulus of Trabecular Bone
,”
Exp. Mech.
,
50
(
6
), pp.
773
781
.10.1007/s11340-009-9274-1
5.
Wiggins
,
K.
, and
Malkin
,
S.
,
1976
, “
Drilling of Bone
,”
J. Biomech.
,
9
(
9
), pp.
553
559
.10.1016/0021-9290(76)90095-6
6.
Nelson
,
J. S.
,
Yow
,
L.
,
Liaw
,
L.-H.
,
Macleay
,
L.
,
Zavar
,
R. B.
,
Orenstein
,
A.
,
Wright
,
W. H.
,
Andrews
,
J. J.
, and
Berns
,
M. W.
,
1988
, “
Ablation of Bone and Methacrylate by a Prototype Mid-Infrared Erbium: YAG Laser
,”
Lasers Surg. Med.
,
8
(
5
), pp.
494
500
.10.1002/lsm.1900080508
7.
Huiskes
,
R.
,
1980
, “
Some Fundamental Aspects of Human Joint Replacement, Section II: Heat Generation and Conduction Analyses of Acrylic Bone Cement In Situ
,”
Acta Orthop. Scand., Suppl.
,
18
, p.
43
.
8.
Zelenov
,
E.
,
1986
, “
Experimental Investigation of the Thermophysical Properties of Compact Bone
,”
Mech. Compos. Mater.
,
21
(
6
), pp.
759
762
.10.1007/BF00605942
9.
Lundskog
,
J.
,
1972
, “
Heat and Bone Tissue. An Experimental Investigation of the Thermal Properties of Bone and Threshold Levels for Thermal Injury
,”
Scand. J. Plast. Reconstr. Surg.
,
9
, pp.
1
80
.
10.
Vachon
,
R. I.
,
Walker
,
F. J.
,
Walker
,
D. F.
, and
Nix
,
G. H.
,
1967
, “
In Vivo Determination of Thermal Conductivity of Bone Using the Thermal Comparator Technique
,”
Digest of the Seventh International Conference of Medical and Biological Engineering. Stockholm
,
Sweden
.
11.
Kirkland
,
R.
,
1967
, “
In Vivo Thermal Conductivity Values for Bovine and Caprine Osseous Tissue
,”
Proceedings of Annual Conference on Engineering in Medicine and Biology, Vol. 9, Boston, MA
.
12.
Moses
,
W. M.
,
Witthaus
,
F. W.
,
Hogan
,
H. A.
, and
Laster
,
W. R.
,
1995
, “
Measurement of the Thermal Conductivity of Cortical Bone by an Inverse Technique
,”
Exp. Therm. Fluid Sci.
,
11
(
1
), pp.
34
39
.10.1016/0894-1777(94)00109-L
13.
Davidson
,
S. R.
, and
James
,
D. F.
,
2000
, “
Measurement of Thermal Conductivity of Bovine Cortical Bone
,”
Med. Eng. Phys.
,
22
(
10
), pp.
741
747
.10.1016/S1350-4533(01)00003-0
14.
Biyikli
,
S.
,
Modest
,
M. F.
, and
Tarr
,
R.
,
1986
, “
Measurements of Thermal Properties for Human Femora
,”
J. Biomed. Mater. Res.
,
20
(
9
), pp.
1335
1345
.10.1002/jbm.820200908
15.
Chato
,
J.
,
1966
,
A Survey of Thermal Conductivity and Diffusivity Data on Biological Materials
,
ASME
, ASME Paper 66-WA/HT-37.
16.
Ribeiro
,
L. A.
,
Rosolem
,
J. B.
, and
Toledo
,
A. O.
,
2011
, “
Improving the Dynamic Range in Distributed Anti-Stokes Raman Thermometry by Means of Susceptibility Asymmetry
,”
21st International Conference on Optical Fibre Sensors (OFS21), International Society for Optics and Photonics, Ottawa, Canada, Vol. 7753, p. 77532W
.
17.
Kim
,
S. H.
,
Noh
,
J.
,
Jeon
,
M. K.
,
Kim
,
K. W.
,
Lee
,
L. P.
, and
Woo
,
S. I.
,
2006
, “
Micro-Raman Thermometry for Measuring the Temperature Distribution Inside the Microchannel of a Polymerase Chain Reaction Chip
,”
J. Micromech. Microeng.
,
16
(
3
), pp.
526
530
.10.1088/0960-1317/16/3/007
18.
Phinney
,
L. M.
,
Serrano
,
J. R.
,
Piekos
,
E. S.
,
Torczynski
,
J. R.
,
Gallis
,
M. A.
, and
Gorby
,
A. D.
,
2010
, “
Raman Thermometry Measurements and Thermal Simulations for MEMS Bridges at Pressures From 0.05 Torr to 625 Torr
,”
ASME J. Heat Transfer
,
132
(
7
), p.
072402
.10.1115/1.4000965
19.
Perichon
,
S.
,
Lysenko
,
V.
,
Remaki
,
B.
,
Barbier
,
D.
, and
Champagnon
,
B.
,
1999
, “
Measurement of Porous Silicon Thermal Conductivity by Micro-Raman Scattering
,”
J. Appl. Phys.
,
86
(
8
), pp.
4700
4702
.10.1063/1.371424
20.
Abel
,
M. R.
, and
Graham
,
S.
,
2005
, “
Thermometry of Polycrystalline Silicon Structures Using Raman Spectroscopy
,”
ASME
Paper No. IPACK2005-73088. 10.1115/IPACK2005-73088
21.
Gan
,
M.
, and
Tomar
,
V.
,
2014
, “
An In Situ Platform for the Investigation of Raman Shift in Micro-Scale Silicon Structures as a Function of Mechanical Stress and Temperature Increase
,”
Rev. Sci. Instrum.
,
85
(
1
), p.
013902
.10.1063/1.4861201
22.
Liu
,
X.
,
Wu
,
X.
, and
Ren
,
T.
,
2010
, “
A Metrology of Silicon Film Thermal Conductivity Using Micro-Raman Spectroscopy
,”
2010 IEEE International SOI Conference (SOI), IEEE
, San Diego, CA, pp.
1
2
.
23.
Dou
,
Y. W.
,
Hu
,
M.
,
Cui
,
M.
, and
Zong
,
Y.
,
2005
, “
Experimental Study of Porous Silicon Thermal Conductivity Using Micro-Raman Spectroscopy
,”
The 6th International Symposium on Test and Measuremen
t
, Taiyuan, China, pp.
2094
2097
.
24.
Zhen-Qian
,
F.
,
Ming
,
H.
,
Wei
,
Z.
, and
Xu-Rui
,
Z.
,
2008
, “
Micro-Raman Spectroscopic Investigation of the Thermal Conductivity of Oxidized Meso-Porous Silicon
,”
Acta Phys. Sinica
,
57
(1), pp.
103
110
.
25.
Pangilinan
,
G.
, and
Gupta
,
Y.
,
1997
, “
Use of Time-Resolved Raman Scattering to Determine Temperatures in Shocked Carbon Tetrachloride
,”
J. Appl. Phys.
,
81
(
10
), pp.
6662
6669
.10.1063/1.365206
26.
Lo
,
H.
, and
Compaan
,
A.
,
1980
, “
Raman Measurements of Temperature During CW Laser Heating of Silicon
,”
J. Appl. Phys.
,
51
(
3
), pp.
1565
1568
.10.1063/1.327809
27.
Reichling
,
M.
,
Klotzbucher
,
T.
, and
Hartmann
,
J.
,
1998
, “
Local Variation of Room-Temperature Thermal Conductivity in High-Quality Polycrystalline Diamond
,”
Appl. Phys. Lett.
,
73
(
6
), pp.
756
758
.10.1063/1.121991
28.
Poruba
,
A.
,
Fejfar
,
A.
,
Remes
,
Z.
,
Springer
,
J.
,
Vanecek
,
M.
,
Kocka
,
J.
,
Meier
,
J.
,
Torres
,
P.
, and
Shah
,
A.
,
2000
, “
Optical Absorption and Light Scattering in Microcrystalline Silicon Thin Films and Solar Cells
,”
J. Appl. Phys.
,
88
(
1
), pp.
148
160
.10.1063/1.373635
29.
Huang
,
S.
,
Ruan
,
X.
,
Fu
,
X.
, and
Yang
,
H.
,
2009
, “
Measurement of the Thermal Transport Properties of Dielectric Thin Films Using the Micro-Raman Method
,”
J. Zhejiang Univ. Sci. A
,
10
(
1
), pp.
7
16
.10.1631/jzus.A0820493
30.
Huang
,
S.
,
Ruan
,
X.
,
Zou
,
J.
,
Fu
,
X.
, and
Yang
,
H.
,
2009
, “
Thermal Conductivity Measurement of Submicrometer-Scale Silicon Dioxide Films by an Extended Micro-Raman Method
,”
Microsyst. Technol.
,
15
(
6
), pp.
837
842
.10.1007/s00542-009-0824-3
31.
Huang
,
S.
,
Ruan
,
X.
,
Zou
,
J.
,
Fu
,
X.
, and
Yang
,
H.
,
2009
, “
Raman Scattering Characterization of Transparent Thin Film for Thermal Conductivity Measurement
,”
J. Thermophys. Heat Transfer
,
23
(
3
), pp.
616
621
.10.2514/1.40976
32.
Fan
,
Z.
,
Swadener
,
J. G.
,
Rho
,
J. Y.
,
Roy
,
M. E.
, and
Pharr
,
G. M.
,
2002
, “
Anisotropic Properties of Human Tibial Cortical Bone as Measured by Nanoindentation
,”
J. Orthop. Res.
,
20
(
4
), pp.
806
810
.10.1016/S0736-0266(01)00186-3
33.
Rho
,
J.-Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
,
1997
, “
Elastic Properties of Human Cortical and Trabecular Lamellar Bone Measured by Nanoindentation
,”
Biomaterials
,
18
(
20
), pp.
1325
1330
.10.1016/S0142-9612(97)00073-2
34.
Zysset
,
P. K.
,
Guo
,
X. E.
,
Hoffler
,
C. E.
,
Moore
,
K. E.
, and
Goldstein
,
S. A.
,
1999
, “
Elastic Modulus and Hardness of Cortical and Trabecular Bone Lamellae Measured by Nanoindentation in the Human Femur
,”
J. Biomech.
,
32
(
10
), pp.
1005
1012
.10.1016/S0021-9290(99)00111-6
35.
Krause
,
W
.,
1987
, “
Orthogonal Bone Cutting: Saw Design and Operating Characteristics
,”
ASME J. Biomech. Eng.
,
109
(
3
), pp.
263
271
.10.1115/1.3138679
36.
McDonald
,
F. A.
, and
Wetsel
,
G. C.
,
1988
, “
Theory of Photothermal and Photoacoustic Effects in Condensed Matter
,”
Phys. Acoust.
,
18
, pp.
167
277
.
37.
Ipatova
,
I.
,
Maradudin
,
A.
, and
Wallis
,
R.
,
1967
, “
Temperature Dependence of the Width of the Fundamental Lattice-Vibration Absorption Peak in Ionic Crystals. II. Approximate Numerical Results
,”
Phys. Rev.
,
155
(
3
), pp.
882
895
.10.1103/PhysRev.155.882
38.
Wallis
,
R. F.
,
Ipatova
,
I. P.
, and
Aa
,
M.
,
1966
, “
Temperature Dependence of Width of Fundamental Lattice Vibration Absorption Peak in Ionic Crystals
,”
Soviet Physics Solid State, USSR
,
8
(
4
), pp.
850
861
.
39.
Rehman
,
I.
,
Smith
,
R.
,
Hench
,
L. L.
, and
Bonfield
,
W.
,
1995
, “
Structural Evaluation of Human and Sheep Bone and Comparison With Synthetic Hydroxyapatite by FT-Raman Spectroscopy
,”
J. Biomed. Mater. Res.
,
29
(
10
), pp.
1287
1294
.10.1002/jbm.820291016
40.
Pezzotti
,
G.
, and
Sakakura
,
S.
,
2003
, “
Study of the Toughening Mechanisms in Bone and Biomimetic Hydroxyapatite Materials Using Raman Microprobe Spectroscopy
,”
J. Biomed. Mater. Res. Part A
,
65
(
2
), pp.
229
236
.10.1002/jbm.a.10447
41.
Cai
,
W.
,
Moore
,
A. L.
,
Zhu
,
Y.
,
Li
,
X.
,
Chen
,
S.
,
Shi
,
L.
, and
Ruoff
,
R. S.
,
2010
, “
Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition
,”
Nano Lett.
,
10
(
5
), pp.
1645
1651
.10.1021/nl9041966
42.
Morris
,
M. D.
, and
Mandair
,
G. S.
,
2011
, “
Raman Assessment of Bone Quality
,”
Clin. Orthop. Relat. Res.
,
469
(
8
), pp.
2160
2169
.10.1007/s11999-010-1692-y
43.
Tchanque-Fossuo
,
C. N.
,
Gong
,
B.
,
Poushanchi
,
B.
,
Donneys
,
A.
,
Sarhaddi
,
D.
,
Gallagher
,
K. K.
,
Deshpande
,
S. S.
,
Goldstein
,
S. A.
,
Morris
,
M. D.
, and
Buchman
,
S. R.
,
2012
, “
Raman Spectroscopy Demonstrates Amifostine Induced Preservation of Bone Mineralization Patterns in the Irradiated Murine Mandible
,”
Bone
,
52
(
2
), pp.
712
717
.10.1016/j.bone.2012.07.029
44.
De Wolf
,
I.
,
1996
, “
Micro-Raman Spectroscopy to Study Local Mechanical Stress in Silicon Integrated Circuits
,”
Semicond. Sci. Technol.
,
11
(
2
), pp.
139
154
.10.1088/0268-1242/11/2/001
45.
Anastass
,
E.
,
Pinczuk
,
A.
,
Burstein
,
E.
,
Pollak
,
F. H.
, and
Cardona
,
M.
,
1970
, “
Effect of Static Uniaxial Stress on the Raman Spectrum of Silicon
,”
Solid State Commun.
,
8
(
2
), pp.
133
138
.10.1016/0038-1098(70)90588-0
46.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2007,
Fundamentals of Heat and Mass Transfer
,
6th ed.
, John Wiley, Hoboken, NJ, p.
571
.
47.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Trans.
,
18
(11), pp.
1323
1329
.
48.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2007,
Fundamentals of Heat and Mass Transfer
,
6th ed.
, John Wiley, Hoboken, NJ, p.
61
.
49.
Samvedi
,
V.
, and
Tomar
,
V.
,
2010
, “
Role of Straining and Morphology in Thermal Conductivity of a Set of Si-Ge Superlattices and Biomimetic Si-Ge Nanocomposites
,”
J. Phys.-D, Appl. Phys.
,
43
(13), p.
135401
.10.1088/0022-3727/43/13/135401
50.
Bhowmick
,
S.
, and
Shenoy
,
V. B.
,
2006
, “
Effect of Strain on the Thermal Conductivity of Solids
,”
J. Chem. Phys.
,
125
(
16
), p.
164513
.10.1063/1.2361287
You do not currently have access to this content.