This paper presents atomic force spectroscopy (AFM) results from large diameter nanowires (NWs), which range in radius from 150 nm to 300 nm, within a nano-assembled platform. The nanomechanical platform is constructed by assembling single NWs across pairs of gold nano-electrodes using dielectrophoresis and contains a short, suspended segment of the NW (in air) between the assembly electrodes. Atomic force microscope (AFM) force spectroscopy measurements are obtained by indenting the NW within this suspended segment and result in deformation of the NW involving a combination of both, bending and nano-indentation modes. This paper demonstrates the measurement technique using lithium iron phosphate NWs as a model system and presents a finite element model to extract the Young's modulus from nanomechanical data. The estimated Young's modulus of this material, which is an electrode material system of interest for next-generation lithium-ion batteries, was found to be diameter dependent and was observed to range in values between 100 MPa and 575 MPa.

References

1.
Burg
,
B. R.
,
Helbling
,
T.
,
Hierold
,
C.
, and
Poulikakos
,
D.
,
2011
, “
Piezoresistive Pressure Sensors With Parallel Integration of Individual Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
,
109
, p.
064310
.10.1063/1.3555619
2.
Jensen
,
K.
,
Weldon
,
J.
,
Garcia
,
H.
, and
Zettl
,
A.
,
2007
, “
Nanotube Radio
,”
Nano Lett.
,
7
, pp.
3508
3511
.10.1021/nl0721113
3.
Nakajima
,
M.
,
Arai
,
F.
,
Dong
,
L. X.
, and
Fukuda
,
T.
,
2004
, “
Calibration of Carbon Nanotube Probes for Pico-Newton Order Force Measurement Inside a Scanning Electron Microscope
,”
J. Robot. Mechatronics
,
16
, pp.
155
162
.
4.
Huang
,
J. Y.
,
Zhong
,
L.
,
Wang
,
C. M.
,
Sullivan
,
J. P.
,
Xu
,
W.
,
Zhang
,
L. Q.
,
Mao
,
S. X.
,
Hudak
,
N. S.
,
Liu
,
X. H.
,
Subramanian
,
A.
,
Fan
,
H. Y.
,
Qi
,
L.
,
Kushima
,
A.
, and
Li
,
J.
,
2010
, “
In-situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode
,”
Science
,
330
, pp.
1515
1520
.10.1126/science.1195628
5.
Goldberg
,
D.
,
Costa
,
P. M. F. J.
,
Lourie
,
O.
,
Mitome
,
M.
,
Bai
,
X. D.
,
Kurashima
,
K.
,
Zhi
,
C. Y.
,
Tang
,
C. C.
, and
Bando
,
Y.
,
2007
, “
Direct Force Measurements and Kinking Under Elastic Deformation of Individual Multiwalled Boron Nitride Nanotubes
,”
Nano Lett.
,
7
, pp.
2146
2151
.10.1021/nl070863r
6.
Yu
,
M. F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
,
2000
, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
,
287
(5453), pp.
637
640
.10.1126/science.287.5453.637
7.
Dong
,
L. X.
,
Arai
,
F.
, and
Fukuda
,
T.
,
2004
, “
Destructive Constructions of Nanostructures With Carbon Nanotubes Through Nanorobotic Manipulation
,”
IEEE/ASME Trans. Mechatronics
,
9
(
2
), pp.
350
357
.10.1109/TMECH.2004.828653
8.
Kim
,
Y.-J.
,
Son
,
K.
,
Choi
,
I.-C.
,
Choi
,
I.-S.
,
Park
,
W. I.
, and
Jang
,
J.-I.
,
2011
, “
Exploring Nanomechanical Behavior of Silicon Nanowires: AFM Bending Versus Nanoindentation
,”
Adv. Funct. Mater.
,
21
, pp.
279
286
.10.1002/adfm.201001471
9.
Zhang
,
H.
,
Tang
,
J.
,
Zhang
,
L.
,
An
,
B.
, and
Qin
,
L.-C.
,
2008
, “
Atomic Force Microscopy Measurement of the Young's Modulus and Hardness of Single LaB6 Nanowires
,”
Appl. Phys. Lett.
,
92
, p.
173121
.10.1063/1.2919718
10.
Tombler
,
W. T.
,
Zhou
,
C. W.
,
Alexseyev
,
L.
,
Kong
,
J.
,
Dai
,
H. J.
,
Lei
,
L.
,
Jayanthi
,
C. S.
,
Tang
,
M. J.
, and
Wu
,
S. Y.
,
2000
, “
Reversible Electromechanical Characteristics of Carbon Nanotubes Under Local-Probe Manipulation
,”
Nature
,
405
, pp.
769
772
.10.1038/35015519
11.
Zheng
,
M.
,
Ke
,
C.
,
Bae
,
I.-T.
,
Park
,
C.
,
Smith
,
M. W.
, and
Jordan
,
K.
,
2012
, “
Radial Elasticity of Multi-Walled Boron Nitride Nanotubes
,”
Nanotechnology
,
23
, p.
095703
.10.1088/0957-4484/23/9/095703
12.
Sohn
,
Y.-S.
,
Park
,
J.
,
Yoon
,
G.
,
Song
,
J.
,
Jee
,
S.-W.
,
Lee
,
J.-H.
,
Na
,
S.
,
Kwon
,
T.
, and
Eom
,
K.
,
2010
, “
Mechanical Properties of Silicon Nanowires
,”
Nanoscale Res. Lett.
,
5
, pp.
2011
2016
.10.1007/s11671-009-9467-7
13.
Li
,
X.
,
Gao
,
H.
,
Murphy
,
C. J.
, and
Caswell
,
K. K.
,
2003
, “
Nanoindentation of Silver Nanowires
,”
Nano Lett.
,
3
(
11
), pp.
1485
1498
.10.1021/nl034436z
14.
Feng
,
G.
,
Nix
,
W. D.
,
Yoon
,
Y.
, and
Lee
,
C. J.
,
2006
, “
A Study of the Mechanical Properties of Nanowires Using Nanoindentation
,”
J. Appl. Phys.
,
99
, p.
074304
.10.1063/1.2189020
15.
Kumar
,
P.
, and
Kiran
,
M. S. R. N.
,
2010
, “
Nanomechanical Characterization of Indium Nano/Microwires
,”
Nanoscale Res. Lett.
,
5
, pp.
1085
1092
.10.1007/s11671-010-9606-1
16.
Wang
,
Z.
,
Mook
,
W. M.
,
Niederberger
,
C.
,
Ghisleni
,
R.
,
Philippe
,
L.
, and
Michler
,
J.
,
2012
, “
Compression of Nanowires Using a Flat Indenter: Diametrical Elasticity Measurement
,”
Nano Lett.
,
12
, pp.
2289
2293
.10.1021/nl300103z
17.
Zhu
,
C. B.
,
Yu
,
Y.
,
Gu
,
L.
,
Weichert
,
K.
, and
Maier
,
J.
,
2011
, “
Electrospinning of Highly Electroactive Carbon-Coated Single-Crystalline LiFePO4 Nanowires
,”
Angew. Chem., Int. Ed.
,
50
(
28
), pp.
6278
6282
.10.1002/anie.201005428
18.
Yuan
,
L.
,
Wang
,
Z.
,
Zhang
,
W.
,
Hu
,
X.
,
Chen
,
J.
,
Huang
,
Y.
, and
Goodenough
,
J. B.
,
2011
, “
Development and Challenges of LiFePO4 Cathode Material for Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
4
, pp.
269
284
.10.1039/c0ee00029a
19.
Lee
,
H.
,
Shin
,
W.
,
Choi
,
J. W.
, and
Park
,
J. Y.
,
2012
, “
Nanomechanical Properties of Lithiated Si Nanowires Probed by Atomic Force Microscopy
,”
J. Phys. D: Appl. Phys.
,
45
, p.
275301
.10.1088/0022-3727/45/27/275301
20.
Lee
,
S.
,
Park
,
J.
,
Sastry
,
A. M.
, and
Lu
,
W.
,
2013
, “
Molecular Dynamics Simulations of SOC-Dependent Elasticity of LixMn2O4 Spinels in Li-Ion Batteries
,”
J. Electrochem. Soc.
,
160
(
6
), pp.
A968
A972
.10.1149/2.147306jes
21.
Maxisch
,
T.
, and
Cedar
,
G.
,
2006
, “
Elastic Properties of Olivine LiFexPO4 From First Principles
,”
Phys. Rev. B
,
73
, p.
174112
.10.1103/PhysRevB.73.174112
22.
Xu
,
D.
,
Subramanian
,
A.
,
Dong
,
L. X.
, and
Nelson
,
B. J.
,
2009
, “
Shaping Nanoelectrodes for Ultrahigh Precision Dielectrophoretic Assembly of Carbon Nanotubes
,”
IEEE Trans. Nanotechnol.
,
8
, pp.
449
456
.10.1109/TNANO.2009.2015295
23.
Subramanian
,
A.
,
Alt
,
A. R.
,
Dong
,
L. X.
,
Kratochvil
,
B. E.
,
Bolognesi
,
C. R.
, and
Nelson
,
B. J.
,
2009
, “
Electrostatic Actuation and Electromechanical Switching Behavior of One-Dimensional Nanostructures
,”
ACS Nano
,
3
, pp.
2953
2962
.10.1021/nn900436x
24.
Sader
,
J. E.
,
Chon
,
J. W. M.
, and
Mulvaney
,
P.
,
1999
, “
Calibration of Rectangular Atomic Force Microscope Cantilevers
,”
Rev. Sci. Instrum.
,
70
, pp.
3967
3969
.10.1063/1.1150021
25.
Askari
,
D.
, and
Feng
,
G.
,
2012
, “
Finite Element Analysis of Nanowire Indentation on a Flat Substrate
,”
J. Mater. Res.
,
27
(
3
), pp.
586
591
.10.1557/jmr.2011.420
26.
Agrawal
,
R.
,
Peng
,
B.
,
Gdoutos
,
E. E.
, and
Espinosa
,
H. D.
,
2008
, “
Elasticity Size Effects in ZnO Nanowires—A Combined Experimental-Computational Approach
,”
Nano Lett.
,
8
(
11
), pp.
3668
3674
.10.1021/nl801724b
27.
Malik
,
R.
,
Burch
,
D.
,
Bazant
,
M.
, and
Ceder
,
G.
,
2010
, “
Particle Size Dependence of the Ionic Diffusivity
,”
Nano Lett.
,
10
, pp.
4123
4127
.10.1021/nl1023595
28.
Bai
,
P.
,
Cogswell
,
A.
, and
Bazant
,
M.
,
2011
, “
Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge
,”
Nano Lett.
,
11
, pp.
4890
4896
.10.1021/nl202764f
29.
Zhu
,
Y.
,
Wang
,
J. W.
,
Liu
,
Y.
,
Liu
,
X. H.
,
Kushima
,
A.
,
Liu
,
Y.
,
Xu
,
Y.
,
Mao
,
S. X.
,
Li
,
J.
,
Wang
,
C.
, and
Huang
,
J. Y.
,
2013
, “
In Situ Atomic-Scale Imaging of Phase Boundary Migration in FePO4 Microparticles During Electrochemical Lithiation
,”
Adv. Mater.
,
25
, pp.
5461
5466
.10.1002/adma.201301374
You do not currently have access to this content.