Differential mobility particle sizers (DMPSs) are instruments for online sizing gas-borne particles in submicrometer and nanometer diameter ranges. The aerosol charger, the differential mobility analyzer (DMA), and the particle concentration detector are three essential components in DMPSs. In the past four decades, the design of DMAs has evolved into a variety of modern versions to extend their sizing limits, especially in lower detectable size limits. The DMAs are now capable of classifying or sizing particles in the diameters down to 1.0 nm. This article gives a brief overview of state-of-the-art DMAs particularly designed for classifying particles with sizes down to sub-10 nm.

References

References
1.
Pui
,
D. Y. H.
, and
Chen
,
D.-R.
,
1997
, “
Guest Editorial—Nanometer Particles: A New Frontier for Multidisciplinary Research
,”
J. Aerosol Sci.
,
28
(
4
), pp.
539
555
.10.1016/S0021-8502(96)00495-8
2.
Kim
,
B. H.
,
Hackett
,
M. J.
,
Park
,
J.
, and
Hyeon
,
T.
,
2014
, “
Synthesis, Characterization, and Application of Ultrasmall Nanoparticles
,”
Chem. Mater.
,
26
(
1
), pp.
59
71
.10.1021/cm402225z
3.
Cheng
,
Y.
,
Morshed
,
R. A.
,
Auffinger
,
B.
,
Tobias
,
A. L.
, and
Lesniak
,
M. S.
,
2014
, “
Multifunctional Nanoparticles for Brain Tumors Imaging and Therapy
,”
Adv. Drug Del. Rev.
,
66
, pp.
42
57
.10.1016/j.addr.2013.09.006
4.
Guo
,
D.
,
Xie
,
G.
, and
Luo
,
J.
,
2014
, “
Mechanical Properties of Nanoparticles: Basics and Applications
,”
J. Phys. D: Appl. Phys.
,
47
(
1
), p.
013001
.10.1088/0022-3727/47/1/013001
5.
Madl
,
A. K.
,
Plummer
,
L. E.
,
Carosino
,
C.
, and
Pinkerton
,
K. E.
,
2014
, “
Nanoparticles, Lung Injury, and the Role of Oxidant Stress
,”
Annu. Rev. Physiol.
,
76
, pp.
447
465
.10.1146/annurev-physiol-030212-183735
6.
Auffan
,
M.
,
Rose
,
J.
,
Bottero
,
J. Y.
,
Lowry
,
G. V.
,
Jolivet
,
J. P.
, and
Wiesner
,
M. R.
,
2009
, “
Towards a Definition of Inorganic Nanoparticles From an Environmental, Health and Safety Perspective
,”
Nat. Nanotechnol.
,
4
, pp.
634
641
.10.1038/nnano.2009.242
7.
Wang
,
S. C.
, and
Flagan
,
R. C.
,
1990
, “
Scanning Electrical Mobility Spectrometer
,”
Aerosol Sci. Technol.
,
13
(
2
), pp.
230
240
.10.1080/02786829008959441
8.
Chen
,
D.-R.
, and
Pui
,
D. Y. H.
,
1999
, “
A High Efficiency, High Throughput Unipolar Aerosol Charger for Nanoparticles
,”
J. Nanopart. Res.
,
1
(
1
), pp.
115
126
.10.1023/A:1010087311616
9.
Guha
,
S.
,
Li
,
M.
,
Tarlov
,
M. J.
, and
Zachariah
,
M. R.
,
2012
, “
Electrospray–Differential Mobility Analysis of Bionanoparticles
,”
Trends Biotechnol.
,
30
(
5
), pp.
291
300
.10.1016/j.tibtech.2012.02.003
10.
Hogan
,
C. J.
, Jr.
, and
Fernández de la Mora
,
J.
,
2009
, “
Tandem Ion Mobility-Mass Spectrometry (IMS-MS) Study of Ion Evaporation From Ionic Liquid-Acetonitrile Nanodrops
,”
Phys. Chem. Chem. Phys.
,
11
, pp.
8079
8090
.10.1039/b904022f
11.
Fernández de la Mora
,
J.
,
2011
,
Ion Mobility Spectroscopy—Mass Spectrometry: Theory and Applications
,
Taylor and Francis
,
Oxford, UK
, Chap. 5.
12.
Park
,
K.
,
Dutcher
,
D.
,
Emery
,
M.
,
Pagels
,
J.
,
Sakurai
,
H.
,
Scheckman
,
J.
,
Qian
,
S.
,
Stolzenburg
,
M. R.
,
Wang
,
X.
,
Yang
,
J.
, and
McMurry
,
P. H.
,
2008
, “
Tandem Measurements of Aerosol Properties—A Review of Mobility Techniques With Extensions
,”
Aerosol Sci. Technol.
,
42
(
10
), pp.
801
816
.10.1080/02786820802339561
13.
Flagan
,
R. C.
,
1998
, “
History of Electrical Aerosol Measurements
,”
Aerosol Sci. Technol.
,
28
(
4
), pp.
301
380
.10.1080/02786829808965530
14.
Whitby
,
K. T.
, and
Clark
,
W. E.
,
1966
, “
Electrical Aerosol Particle Counting and Size Distribution Measuring System for the 0.015 to 1 μ Size Range
,”
Tellus
,
18
(
2–3
), pp.
573
586
.10.1111/j.2153-3490.1966.tb00272.x
15.
Liu
,
B. Y. H.
,
Whitby
,
K. T.
, and
Pui
,
D. Y. H.
,
1974
, “
A Portable Electrical Analyzer for Size Distribution Measurement of Submicron Aerosols
,”
APCAJ
,
24
(
11
), pp.
1067
1072
.10.1080/00022470.1974.10470016
16.
Liu
,
B. Y. H.
, and
Pui
,
D. Y. H.
,
1974
, “
A Submicron Aerosol Standard and the Primary, Absolute Calibration of the Condensation Nucleus Counter
,”
J. Colloid Interface Sci.
,
47
(
1
), pp.
155
171
.10.1016/0021-9797(74)90090-3
17.
Knutson
,
E. O.
, and
Whitby
,
K. T.
,
1975
, “
Aerosol Classification by Electric Mobility: Apparatus, Theory, and Applications
,”
J. Aerosol Sci.
6
(
6
), pp.
443
451
.10.1016/0021-8502(75)90060-9
18.
Kousaka
,
Y.
,
Okuyama
,
K.
,
Adachi
,
M.
, and
Mimura
,
T.
,
1986
, “
Effect of Brownian Diffusion on Electrical Classification of Ultrafine Aerosol Particles in Differential Mobility Analyzer
,”
J. Chem. Eng. Jpn.
,
19
(
5
), pp.
401
407
.10.1252/jcej.19.401
19.
Winklmayr
,
W.
,
Reischl
,
G. P.
,
Lindner
,
A. O.
, and
Berner
,
A.
,
1991
, “
A New Electromobility Spectrometer for the Measurement of Aerosol Size Distributions in the Size Range From 1 to 1000 nm
,”
J. Aerosol Sci.
,
22
(
3
), pp.
289
296
.10.1016/S0021-8502(05)80007-2
20.
Reischl
,
G. P.
,
Mäkelä
,
J. M.
, and
Necid
,
J.
,
1997
, “
Performance of Vienna Type Differential Mobility Analyzer at 1.2–20 Nanometer
,”
Aerosol Sci. Technol.
,
27
(
6
), pp.
651
672
.10.1080/02786829708965503
21.
Rosell-Llompart
,
J.
,
Loscertales
,
I. G.
,
Bingham
,
D.
, and
Fernández de la Mora
,
J.
,
1996
, “
Sizing Nanoparticles and Ions With a Short Differential Mobility Analyzer
,”
J. Aerosol Sci.
,
27
(
5
), pp.
695
719
.10.1016/0021-8502(96)00016-X
22.
Fissan
,
H.
,
Hummes
,
D.
,
Stratmann
,
F.
,
Büscher
,
P.
,
Neumann
,
S.
,
Pui
,
D. Y. H.
, and
Chen
,
D.
,
1996
, “
Experimental Comparison of Four Differential Mobility Analyzers for Nanometer Aerosol Measurements
,”
Aerosol Sci. Technol.
,
24
(
1
), pp.
1
13
.10.1080/02786829608965347
23.
Chen
,
D.
, and
Pui
,
D. Y. H.
,
1997
, “
Numerical Modeling of the Performance of Differential Mobility Analyzers for Nanometer Aerosol Measurements
,”
J. Aerosol Sci.
,
28
(
6
), pp.
985
1004
.10.1016/S0021-8502(97)00004-9
24.
Chen
,
D.-R.
,
Pui
,
D. Y. H.
,
Hummes
,
D.
,
Fissan
,
H.
,
Quant
,
F. R.
, and
Sem
,
G. J.
,
1998
, “
Design and Evaluation of a Nanometer Aerosol Differential Mobility Analyzer (Nano-DMA)
,”
J Aerosol Sci.
,
29
(
5–6
), pp.
497
509
.10.1016/S0021-8502(97)10018-0
25.
Pourprix
,
M.
, and
Daval
,
J.
,
1990
, “Electrostatic Precipitation of Aerosol on Wafers, a New Mobility Spectrometer,” Aerosols: Science, Industry, Health and Environment: Proceedings of the Third International Aerosol Conference,
S.
Masuda
, and
K.
Takahashi
, Eds., Kyoto, Japan, Sept. 24–27, Pergamon Press, New York. Vol. 2.
26.
Pourprix
,
M.
,
1994
, “
Selecteur de Particules Chargees, a Haute Sensibilite
,” Brevet Francais, France Patent No. EP0685725 A1.
27.
Zhang
,
S.-H.
,
Akutsu
,
Y.
,
Russell
,
L. M.
,
Flagan
,
R. C.
, and
Seinfeld
,
J. H.
,
1995
, “
Radial Differential Mobility Analyzer
,”
Aerosol Sci. Technol.
,
23
(
3
), pp.
357
372
.10.1080/02786829508965320
28.
Zhang
,
S.-H.
, and
Flagan
,
R. C.
,
1996
, “
Resolution of the Radial Differential Mobility Analyzer for Ultrafine Particles
,”
J. Aerosol Sci.
,
27
(
8
), pp.
1179
1200
.10.1016/0021-8502(96)00036-5
29.
Brunelli
,
N. A.
,
Flagan
,
R. C.
, and
Giapis
,
K. P.
,
2009
, “
Radial Differential Mobility Analyzer for One Nanometer Particle Classification
,”
Aerosol Sci. Technol.
,
43
(
1
), pp.
53
59
.10.1080/02786820802464302
30.
De Juan
,
L.
, and
Fernández de la Mora
,
J.
,
1998
, “
High Resolution Size Analysis of Nanoparticles and Ions: Running a Vienna DMA of Near Optimal Length at Reynolds Numbers up to 5000
,”
J. Aerosol Sci.
,
29
(
5–6
), pp.
617
626
.10.1016/S0021-8502(97)10028-3
31.
Martinez-Lozano
,
P.
, and
Fernández de la Mora
,
J.
,
2006
, “
Experimental Tests of a Nano-DMA With no Voltage Change Between Aerosol Inlet and Outlet Slits
,”
J. Aerosol Sci.
,
37
(
11
), pp.
1629
1642
.10.1016/j.jaerosci.2006.02.001
32.
Martinez-Lozano
,
P.
, and
Labowsky
,
M.
,
2009
, “
An Experimental and Numerical Study of a Miniature High Resolution Isopotential DMA
,”
J. Aerosol Sci.
,
40
(
5
), pp.
451
462
.10.1016/j.jaerosci.2009.01.004
33.
Fernández de la Mora
,
J.
, and
Kozlowski
,
J.
,
2013
, “
Hand-Held Differential Mobility Analyzers of High Resolution for 1–30 nm Particles: Design and Fabrication Considerations
,”
J. Aerosol Sci.
,
57
, pp.
45
53
.10.1016/j.jaerosci.2012.10.009
34.
Mei
,
F.
,
Fu
,
H.
, and
Chen
,
D.-R.
,
2011
, “
A Cost-Effective Differential Mobility Analyzer (cDMA) for Multiple DMA Column Applications
,”
J. Aerosol Sci.
,
42
, pp.
462
473
.10.1016/j.jaerosci.2011.04.001
35.
Santos
,
J. P.
,
Hontañón
,
E.
,
Ramiro
,
E.
, and
Alonso
,
M.
,
2009
, “
Performance Evaluation of a High-Resolution Parallel-Plate Differential Mobility Analyzer
,”
Atmos. Chem. Phys.
,
9
, pp.
2419
2429
.10.5194/acp-9-2419-2009
36.
Hontañón
,
E.
, and
Kruis
,
F. E.
,
2009
, “
A Differential Mobility Analyzer (DMA) for Size Selection of Nanoparticles at High Flow Rates
,”
Aerosol Sci. Technol.
,
43
(
1
), pp.
25
37
.10.1080/02786820802446812
37.
Hontañón
,
E.
,
Rouenhoff
,
M.
,
Azabal
,
A.
,
Ramiro
,
E.
, and
Kruis
,
F. E.
,
2014
, “
Assessment of a Cylindrical and a Rectangular Plate Differential Mobility Analyzer for Size Fractionation of Nanoparticles at High-Aerosol Flow Rates
,”
Aerosol Sci. Technol.
,
48
(
3
), pp.
333
339
.10.1080/02786826.2013.875116
38.
Steer
,
B.
,
Gorbunov
,
B.
,
Muir
,
R.
,
Ghimire
,
A.
, and
Rowles
,
J.
,
2014
, “
Portable Planar DMA: Development and Tests
,”
Aerosol Sci. Technol.
,
48
(
3
), pp.
251
260
.10.1080/02786826.2013.868863
39.
Myojo
,
T.
,
Ikawa
,
S.
,
Sakae
,
H.
, and
Kohyama
,
N.
,
2001
, “
A New Long DMA and Its Performance for Size-Measurement of 1 μm Polystyrene Latex Particles
,”
J. Air Clean. Contam. Control
,
39
, pp.
168
175
(in Japanese).
40.
Myojo
,
T.
,
Ehara
,
K.
,
Koyama
,
H.
, and
Okuyama
,
K.
,
2004
, “
Size Measurement of Polystyrene Latex Particles Larger Than 1 Micrometer Using a Long Differential Mobility Analyzer
,”
Aerosol Sci. Technol.
,
38
(
12
), pp.
1178
1184
.10.1080/027868290901882
41.
Uin
,
J.
,
Tamm
,
E.
, and
Mirme
,
A.
,
2011
, “
Very Long DMA for the Generation of the Calibration Aerosols in Particle Diameter Range up to 10 μm by Electrical Separation
,”
Aerosol Air Qual. Res.
,
11
, pp.
531
538
.10.4209/aaqr.2011.05.0068
42.
Raddatz
,
M.
,
Wiedensohler
,
A.
,
Wex
,
H.
, and
Stratmann
,
F.
,
2013
, “
Size Selection of Sub- and Super-Micron Clay Mineral Kaolinite Particles Using a Custom-Built Maxi-DMA
,”
Nucleation and Atmospheric Aerosols: 19th International Conference
,
AIP
Conf. Proc., Fort Collins, CO, June 23–28, Vol 1527, pp.
457
460
.10.1063/1.4803303
43.
Rosch
,
M.
,
Pfeifer
,
S.
,
Wiedensohler
,
A.
, and
Stratmann
,
F.
,
2014
, “
Selection of Quasi-Monodisperse Super-Micron Aerosol Particles
,” EGU General Assembly, Geophysical Research Abstracts, 16, Paper No. EGU2014-4957.
44.
Intra
,
P.
, and
Tippayawong
,
N.
,
2008
, “
An Overview of Differential Mobility Analyzers for Size Classification of Nanometer-Sized Aerosol Particles
,”
Songklanakarin J. Sci. Technol.
,
30
(
2
), pp.
243
256
.
45.
Allen
,
M.
, and
Raabe
,
O.
,
1985
, “
Slip Correction Measurements of Spherical Solid Aerosol Particles in an Improved Millikan Apparatus
,”
Aerosol Sci. Technol.
,
4
(
3
), pp.
269
286
.10.1080/02786828508959055
46.
Flagan
,
R. C.
,
2011
,
Aerosol Measurement: Principles, Techniques, and Applications
,
3rd ed.
,
Wiley
,
Hoboken, NJ
, Chap. 15.
47.
Fernández de la Mora
,
J.
,
2011
,
Aerosol Measurements: Principles, Techniques, and Applications
,
3rd ed.
Wiley
,
Hoboken, NJ
, Chap. 32.
48.
Kousaka
,
Y.
,
Okuyama
,
K.
, and
Adachi
,
M.
,
1985
, “
Determination of the Size Distribution of Ultrafine Aerosol Particles Using a Differential Mobility Analyzer
,”
Aerosol Sci. Technol.
,
4
(
2
), pp.
209
225
.10.1080/02786828508959049
49.
Stolzenburg
,
M. R.
,
1988
, “
An Ultrafine Aerosol Size Distribution Measuring System
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
50.
Hagwood
,
C.
,
1999
, “
The DMA Transfer Function With Brownian Motion a Trajectory/Monte-Carlo Approach
,”
Aerosol Sci. Technol.
,
30
(
1
), pp.
40
61
.10.1080/027868299304877
51.
Mamakos
,
A.
,
Ntziachristos
,
L.
, and
Samaras
,
Z.
,
2007
, “
Diffusion Broadening of DMA Transfer Functions. Numerical Validation of Stolzenburg Model
,”
J. Aerosol Sci.
,
38
(
7
), pp.
747
763
.10.1016/j.jaerosci.2007.05.004
52.
Flagan
,
R. C.
,
1999
, “
On Differential Mobility Analyzer Resolution
,”
Aerosol Sci. Technol.
,
30
(
6
), pp.
556
570
.10.1080/027868299304417
53.
Hewitt
,
G. W.
,
1957
, “
The Charging of Small Particles for Electrostatic Precipitation
,”
Am. Inst. Electr. Eng.
,
76
, pp.
300
306
.
54.
Jiang
,
J.
,
Attoui
,
M.
,
Heim
,
M.
,
Brunelli
,
N. A.
,
McMurry
,
P. H.
,
Kasper
,
G.
,
Flagan
,
R. C.
,
Giapis
,
K.
, and
Mouret
,
G.
,
2011
, “
Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle Classification
,”
Aerosol Sci. Technol.
,
45
(
4
), pp.
480
492
.10.1080/02786826.2010.546819
55.
Rosser
,
S.
, and
Fernández de la Mora
.,
2005
, “
Vienna-Type DMA of High Resolution and High Flow Rate
,”
Aerosol Sci. Technol.
,
39
(
12
), pp.
1191
1200
.10.1080/02786820500444820
56.
Steiner
,
G.
,
Attoui
,
M.
,
Wimmer
,
D.
, and
Reischl
,
G. P.
,
2010
, “
A Medium Flow, High-Resolution Vienna DMA Running in Recirculating Mode
,”
Aerosol Sci. Technol.
,
44
(
4
), pp.
308
315
.10.1080/02786821003636763
57.
Mesbah
,
B.
,
1994
, “
Le spectrometer de mobilite electrique circulair; Performance et applications
,” Theses de Doctorat a l'Universite Paris XII. 4 Juil., Creteil, France.
58.
Brunelli
,
N. A.
,
Neidholdt
,
E. L.
,
Giapis
,
K. P.
,
Flagan
,
R. C.
, and
Beauchamp
,
J. L.
,
2013
, “
Continuous Flow Ion Mobility Separation With Mass Spectrometric Detection Using a Nano-Radial Differential Mobility Analyzer at Low Flow Rates
,”
Anal. Chem.
,
85
(
9
), pp.
4335
4341
.10.1021/ac3032417
59.
Mui
,
W.
,
Thomas
,
D. A.
,
Downard
,
A. J.
,
Beauchamp
,
J. L.
,
Seinfeld
,
J. H.
, and
Flagan
,
R. C.
,
2013
, “
Ion Mobility-Mass Spectrometry With a Radial Opposed Migration Ion and Aerosol Classifier (ROMIAC)
,”
Anal. Chem.
,
85
(
13
), pp.
6319
6326
.10.1021/ac400580u
60.
Loscertales
,
I. G.
,
1998
, “
Drift Differential Mobility Analyzer
,”
J. Aerosol Sci.
,
29
(
9
), pp.
1117
1139
.10.1016/S0021-8502(98)80007-4
61.
Flagan
,
R. C.
,
2004
, “
Opposed Migration Aerosol Classifier (OMAC)
,”
Aerosol Sci. Technol.
,
38
(
9
), pp.
890
899
.10.1080/027868290505242
62.
Song
,
D. K.
, and
Dhaniyala
,
S.
,
2007
, “
Nanoparticle Cross-Flow Differential Mobility Analyzer (NCDMA): Theory and Design
,”
J. Aerosol Sci.
,
38
, pp.
964
979
.10.1016/j.jaerosci.2007.07.004
63.
Rockwood
,
A. L.
,
Lee
,
E. D.
,
Agbonkonkon
,
N.
, and
Lee
,
M. L.
,
2007
, “
Cross-Flow Ion Mobility Analyzer
,” U.S. Patent No. 7199362 B2.
64.
Gillig
,
K. J.
, and
Chen
,
C.-H.
,
2014
, “
Increasing the Performance of Portable Ion Mobility Analyzers: Development of the Periodic Focusing Differential Mobility Analyzer (PFDMA)
,”
Mass Spectrom.
,
3
(S0032), 1–5.10.5702/massspectrometry.S0032
You do not currently have access to this content.