In the present study, the forced convective heat transfer performance of two different nanofluids, namely, Al2O3-water and CNT-water has been studied experimentally in an automobile radiator. Four different concentrations of nanofluid in the range of 0.15–1 vol. % were prepared by the additions nanoparticles into the water as base fluid. The coolant flow rate is varied in the range of 2 l/min–5 l/min. Nanocoolants exhibit enormous change in the heat transfer compared with the pure water. The heat transfer performance of CNT-water nanofluid was found to be better than Al2O3-water nanocoolant. Furthermore, the Nusselt number is found to increase with the increase in the nanoparticle concentration and nanofluid velocity.

References

1.
Choi
U. S.
,
Singer
D. A.
, and
Wang
H. P.
,
1995
,
Development and Application of Non-Newtonian Flows
, Vol. 231,
ASME
,
New York
, pp.
99
105
.
2.
Choi
S.
,
2006
, “
Nanofluids for Improved Efficiency in Cooling Systems
,”
Heavy Vehicle Systems Review
,
Argonne National Laboratory
,
Argonne, Illinois
.
3.
Kulkarni
,
D. P.
,
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Oliva
,
D.
,
2011
Application of Aluminum Oxide Nanofluids in Diesel Electric Generators Jacket Water Coolant
,”
Appl. Therm. Eng.
,
28
, pp.
1774
1781
.10.1016/j.applthermaleng.2007.11.017
4.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Namburu
,
P. K.
,
2010
, “
Numerical Study of Fluid Dynamic and Heat Transfer Performance of Al2O3 and CuO Nanofluids in the Flat Tubes of a Radiator
,”
Int. J. Heat Fluid Flow
,
31
, pp.
613
621
.10.1016/j.ijheatfluidflow.2010.02.016
5.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Jamnani
,
M. S.
, and
Hoseini
,
S. H.
,
2011
, “
Improving the Cooling Performance of Automobile Radiator With Al2O3/Water Nanofluid
,”
Appl. Therm. Eng.
,
31
(10), pp.
1833
1838
.10.1016/j.applthermaleng.2011.02.029
6.
Leong
,
K. Y.
,
Saidur
,
R.
,
Kazi
,
S. N.
, and
Mamun
,
A. H.
,
2010
, “
Performance Investigation of an Automotive Car Radiator Operated With Nanofluid-Based Coolants (Nanofluid as a Coolant in a Radiator
),”
Appl. Therm. Eng.
,
30
, pp.
2685
2692
.10.1016/j.applthermaleng.2010.07.019
7.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Hoseini
,
S. H.
, and
Jamnani
,
M. S.
,
2011
, “
Experimental Study of Heat Transfer Enhancement Using Water/Ethylene Glycol Based Nanofluids as a New Coolant in the Car Radiator
,”
Int. Commun. Heat Mass Transfer
,
38
(9), pp.
1283
1290
.10.1016/j.icheatmasstransfer.2011.07.001
8.
Naraki
,
M.
,
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
, and
Vermahmoudi
,
Y.
,
2013
, “
Parametric Study of Overall Heat Transfer Coefficient of CuO/Water Nanofluids in a Car Radiator
,”
Int. J. Therm. Sci.
,
66
, pp.
82
90
.10.1016/j.ijthermalsci.2012.11.013
9.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammad
,
H. A.
,
2011
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
(3), pp.
1646
1668
.10.1016/j.rser.2010.11.035
10.
Assael
,
M. J.
,
Chen
,
C. F.
,
Metaxa
,
I. N.
, and
Wakeham
,
W. A.
,
2004
, “
Thermal Conductivity of Suspensions of Carbon Nanotubes in Water
,”
Int. J. Thermophys.
,
25
(4), pp.
971
98
510.1023/B:IJOT.0000038494.22494.04.
11.
Hwang
,
Y. J.
,
Ahn
,
Y. C.
,
Shin
,
H. S.
,
Lee
,
C. G.
,
Kim
,
G. T.
,
Park
,
H. S.
, and
Lee
,
J. K.
,
2006
, “
Investigation on Characteristics of Thermal Conductivity Enhancement of Nanofluids
,”
Current Appl. Phys.
,
6
, pp.
1068
1071
.10.1016/j.cap.2005.07.021
12.
Phuoc
,
T. X.
,
Massoudi
,
M.
, and
Chen
,
R. H.
,
2011
, “
Viscosity and Thermal Conductivity of Nanofluids Containing Multi-Walled Carbon Nanotubes Stabilized by Chitosan
,”
Int. J. Therm. Sci.
,
50
(1), pp.
12
18
.10.1016/j.ijthermalsci.2010.09.008
13.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
,
2006
, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
,
49
, pp.
240
225
.10.1016/j.ijheatmasstransfer.2005.07.009
14.
Ding
,
Y.
,
Chen
,
H.
,
He
,
Y.
,
Lapkin
,
A.
,
Yeganeh
,
M.
,
Siller
,
L.
, and
Butenko
,
Y. V.
,
2007
, “
Forced Convective Heat Transfer of Nanofluids
,”
Adv. Powder Technol.
,
18
(6), pp.
813
824
.10.1163/156855207782515021
15.
Chougule
,
S. S.
,
Sahu
,
S. K.
, and
Pise
,
A. T.
,
2014
, “
Thermal Performance of Two Phase Thermosyphon Flat-Plate Solar Collectors by Using Nanofluid
,”
ASME Int. J. Sol. Energy
,
136
(1), p.
014503
.10.1115/1.4025591
16.
Chougule
,
S. S.
,
Sahu
,
S. K.
, and
Pise
,
A. T.
,
2013
, “
Performance Enhancement of Two Phase Thermosyphon Flat-Plate Solar Collectors by Using Surfactant and Nanofluid
,”
Int. J. Front. Heat Pipes
,
4
(
1
), pp.
1
6
.10.5098/fhp.v4.1.3002
17.
Chougule
,
S. S.
,
Pise
,
A. T.
, and
Madane
,
P. A.
,
2012
, “
Performance of Nanofluid-Charged Solar Water Heater by Solar Tracking System
,”
Proceedings of IEEE-ICAESM-2012, Vol. 6
,
Nagapattinam, India
, March 30–31, pp.
247
253
.
18.
Chougule
,
S. S.
, and
Pise
,
A. T.
,
2012
, “
Studies of CNT Nanofluid in Two Phase System
,”
Int. J. Global Technol. Initiatives
,
1
, pp.
F14
F20
.
19.
Pise
A. T.
, and
Chougule
S. S.
,
2011
, “
Experimental Investigation Heat Transfer Augmentation of Solar Heat Pipe Collector by Using Nanofluid
,”
21st National and 10th ISHMT-ASME Heat and Mass Transfer Conference
,
Madras, India, December 27–30
.
20.
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2013
, “
Comparison of Augmented Thermal Performance of CNT/Water and Al2O3/Water Nanofluids in Transition Flow Through a Straight Circular Duct Fitted With Helical Screw Tape Inserts,” 22nd National and 11th ISHMT-ASME Heat and Mass Transfer Conference
,
Kharagpur
, India, ASME Paper No. HMTC1300461.
21.
Xie
,
H.
,
Lee
,
H.
,
Youn
,
W.
, and
Choi
,
M.
,
2003
, “
Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities
,”
J. Appl. Phys.
,
94
(
8
), pp.
4967
4971
.10.1063/1.1613374
22.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimental and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
23.
ANSI/ASME
, 1985, “Measurement Uncertainty,” Paper No. PTC 19.
24.
Chen
,
L.
, and
Xie
,
H.
,
2010
, “
Surfactant-Free Nanofluids Containing Double- and Single-Walled Carbon Nanotubes Functionalized by a Wet-Mechanochemical Reaction
,”
Thermochim. Acta
,
497
, pp.
67
71
.10.1016/j.tca.2009.08.009
25.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2008
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
, pp.
560
568
.10.1016/j.ijthermalsci.2007.05.004
26.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
, pp.
567
574
.10.1115/1.1571080
27.
Chon
,
C. H.
, and
Kihm
,
K. D.
,
2005
, “
Thermal Conductivity Enhancement of Nanofluids by Brownian Motion
,”
ASME J. Heat Transfer
,
127
, p.
810
.10.1115/1.2033316
28.
Sundar
,
L. S.
, and
Sharma
,
K. V.
,
2010
, “
Turbulent Heat Transfer and Friction Factor of Al2O3 Nanofluid in Circular Tube With Twisted Tape Inserts
,”
Int. J. Heat Mass Transfer
,
53
, pp.
1409
1416
.10.1016/j.ijheatmasstransfer.2009.12.016
29.
Chen
,
L.
,
Xie
,
H.
,
Li
,
Y.
, and
Yu
,
W.
,
2008
, “
Nanofluids Containing Carbon Nanotubes Treated by Mechanochemical Reaction
,”
Thermochim. Acta
,
477
, pp.
21
24
.10.1016/j.tca.2008.08.001
30.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
,
Heat Transfer in Automobile Radiators of Tubular Type
,
University of California Press
,
Berkeley, CA
, pp.
13
18
.
You do not currently have access to this content.