The paper proposes a new modeling approach for the prediction and analysis of the mechanical properties in deoxyribonucleic acid (DNA) molecules based on a hybrid atomistic-finite element continuum representation. The model takes into account of the complex geometry of the DNA strands, a structural mechanics representation of the atomic bonds existing in the molecules and the mass distribution of the atoms by using a lumped parameter model. A 13-base-pair DNA model is used to illustrate the proposed approach. The properties of the equivalent bond elements used to represent the DNA model have been derived. The natural frequencies, vibration mode shapes, and equivalent continuum mechanical properties of the DNA strand are obtained. The results from our model compare well with a high-fidelity molecular mechanics simulation and existing MD and experimental data from open literature.

References

References
1.
Balaeff
,
A.
,
Koudella
,
C. R.
,
Mahadevan
,
L.
, and
Schulten
,
K.
,
2004
, “
Modelling DNA Loops Using Continuum and Statistical Mechanics
,”
Philos. Trans. R. Soc. London, Ser. A
,
362
(
1820
), pp.
1355
1371
.10.1098/rsta.2004.1384
2.
Strick
,
T.
,
Allemand
,
J.-F.
,
Croquette
,
V.
, and
Bensimon
,
D.
,
2000
, “
Twisting and Stretching Single DNA Molecules
,”
Prog. Biophys. Mol. Biol.
,
74
(
1–2
), pp.
115
140
.10.1016/S0079-6107(00)00018-3
3.
Prévost
,
C.
,
Takahashi
,
M.
, and
Lavery
,
R.
,
2009
, “
Deforming DNA: From Physics to Biology
,”
Eur. J. Chem. Phys. Phys. Chem.
,
10
(
9–10
), pp.
1399
1404
.10.1002/cphc.200900253
4.
Seeman
,
N. C.
,
2003
, “
DNA in a Material World
,”
Nature
,
421
(
23
), pp.
427
431
.10.1038/nature01406
5.
Pinheiro
,
A. V.
,
Han
,
D.
,
Shih
,
W. M.
, and
Yan
,
H.
,
2011
, “
Challenges and Opportunities for Structural DNA Nanotechnology
,”
Nat. Nanotechnol.
,
6
, pp.
763
772
.10.1038/nnano.2011.187
6.
Church
,
G. M.
,
Gao
,
Y.
, and
Kosuri
,
S.
,
2012
, “
Next-Generation Digital Information Storage in DNA
,”
Science
,
337
(
6102
), p.
1628
.10.1126/science.1226355
7.
Forth
,
S.
,
Deufel
,
C.
,
Sheinin
,
M.
,
Daniels
,
B.
,
Sethna
,
J.
, and
Wang
,
M.
,
2008
, “
Abrupt Buckling Transition Observed During the Plectoneme Formation of Individual DNA Molecules
,”
Phys. Rev. Lett.
,
100
(
14
), p.
148301
.10.1103/PhysRevLett.100.148301
8.
Bryant
,
Z.
,
Stone
,
M. D.
,
Gore
,
J.
,
Smith
,
S. B.
,
Cozzarelli
,
N. R.
, and
Bustamante
,
C.
,
2003
, “
Structural Transitions and Elasticity From Torque Measurements on DNA
,”
Nature
,
424
(
17
), pp.
338
341
.10.1038/nature01810
9.
Bustamante
,
C.
,
Bryant
,
Z.
, and
Smith
,
S.
,
2003
, “
Ten Years of Tension: Single-Molecule DNA Mechanics
,”
Nature
,
421
(
23
), pp.
423
427
.10.1038/nature01405
10.
Williams
,
M. C.
,
Rouzina
,
I.
, and
McCauley
,
M. J.
,
2009
, “
Peeling Back the Mystery of DNA Overstretching
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
43
), pp.
18047
18048
.10.1073/pnas.0910269106
11.
Chou
,
K.
,
1983
, “
Low-Frequency Vibrations of Helical Structures in Protein Molecules
,”
Biochem. J.
,
209
, pp.
573
580
.
12.
Bathe
,
M.
,
2008
. “
A Finite Element Framework for Computation of Protein Normal Modes and Mechanical Response
,”
Proteins: Struct. Funct. Bioinf.
,
70
(
4
), pp.
1595
1609
.10.1002/prot.21708
13.
Manghi
,
M.
,
Destainville
,
N.
, and
Palmeri
,
J.
,
2012
, “
Mesoscopic Models for DNA Stretching Under Force: New Results and Comparison With Experiments
,”
Eur. Phys. J. E
,
94
(
110
), pp.
1
13
.10.1140/epje/i2012-12110-2
14.
Brickmann
,
J.
, and
Schmitt
,
U.
,
1999
. “
Classical Molecular Dynamics Simulations With Quantum Degree of Freedom
,”
Molecular Dynamics: From Classical to Quantum Methods
,
P. B.
Balbuena
and
J. M.
Seminario
, ed.,
Elsevier Science B.V.
, Amsterdam.
15.
Balaeff
,
A.
,
Mahadevan
,
L.
, and
Schulten
,
K.
,
2006
, “
Modelling DNA Loops Using the Theory of Elasticity
,”
Phys. Rev. Lett.
,
73
(
031919
), pp.
1
23
.10.1103/PhysRevE.73.031919
16.
White
,
J. H.
, and
Bauer
,
W. R.
,
2004
, “
Finite-Element Analysis of the Displacement of Closed DNA Loops Under Torsional Stress
,”
Philos. Trans. R. Soc. London, Ser. A
,
362
(
1820
), pp.
1335
1353
.10.1098/rsta.2004.1379
17.
Ma
,
L.
,
Yethiraj
,
A.
,
Chen
,
X.
, and
Cui
,
Q.
,
2009
, “
A Computational Framework for Mechanical Response of Macromolecules: Application to the Salt Concentration Dependence of DNA Bendability
,”
Biophys. J.
,
96
(
9
), pp.
3543
3554
.10.1016/j.bpj.2009.01.047
18.
Buehler
,
M. J.
,
2008
,
Atomistic Modeling of Materials Failure
,
Springer
,
NY
.
19.
Villa
,
E.
,
Balaeff
,
A.
, and
Schulten
,
K.
,
2005
, “
Structural Dynamics of the lac Repressor-DNA Complex Revealed by a Multiscale Simulation
,”
Proc. Natl. Acad. Sci. U.S.A.
,
102
(
19
), pp.
6783
6788
.10.1073/pnas.0409387102
20.
van Eijck
,
L.
,
Merzel
,
F.
,
Rols
,
S.
,
Ollivier
,
J.
,
Forsyth
,
V. T.
, and
Johnson
,
M. R.
,
2011
, “
Direct Determination of the Base-Pair Force Constant of DNA From the Acoustic Phonon Dispersion of the Double Helix
,”
Phys. Rev. Lett.
,
107
, p.
088102
.10.1103/PhysRevLett.107.088102
21.
Lavery
,
R.
,
Lebrun
,
A.
,
Allemand
,
J.-F.
,
Bensimon
,
D.
, and
Croquette
,
V.
,
2002
, “
Structure and Mechanics of Single Biomolecules: Experiment and Simulation
,”
J. Phys.: Condens. Matter
,
14
(
14
), pp.
R383
R414
.10.1088/0953-8984/14/14/202
22.
Zhang
,
Y. Y.
,
Wang
,
C. M.
,
Duan
,
W. H.
,
Xiang
,
Y.
, and
Zong
,
Z.
,
2009
, “
Assessment of Continuum Mechanics Models in Predicting Buckling Strains of Single-Walled Carbon Nanotubes
,”
Nanotechnology
,
20
(39), p.
395707
.10.1088/0957-4484/20/39/395707
23.
Li
,
C.
, and
Chou
,
T. W.
,
2003
, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids Struct.
,
40
, pp.
2487
2499
.10.1016/S0020-7683(03)00056-8
24.
Batra
,
R.
, and
Sears
,
A.
,
2007
, “
Continuum Models of Multi-Walled Carbon Nanotubes
,”
Int. J. Solids Struct.
,
44
(22–23), pp.
7577
7596
.10.1016/j.ijsolstr.2007.04.029
25.
Tserpes
,
K. I.
, and
Papanikos
,
P.
,
2005
, “
Finite Element Modeling of Single-Walled Carbon Nanotubes
,”
Composites Part B
,
36
(5), pp.
468
477
.10.1016/j.compositesb.2004.10.003
26.
Saavedra Flores
,
E. I.
,
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Scarpa
,
F.
,
2011
, “
Hyperelastic Axial Buckling of Single Wall Carbon Nanotubes
,”
Physica E
,
44
(
2
), pp.
525
529
.10.1016/j.physe.2011.10.006
27.
Scarpa
,
F.
,
Adhikari
,
S.
, and
Phani
,
A. S.
,
2009
, “
Effective Elastic Mechanical Properties of Single Layer Graphene Sheets
,”
Nanotechnology
,
20
(
6
), p.
065709
.10.1088/0957-4484/20/6/065709
28.
Liu
,
X.
,
Metcalf
,
T. H.
,
Robinson
,
J. T.
,
Houston
,
B. H.
, and
Scarpa
,
F.
,
2012
, “
Shear Modulus of Monolayer Graphene Prepared by Chemical Vapor Deposition
,”
Nano Lett.
,
12
(
2
), pp.
1013
1017
.10.1021/nl204196v
29.
Scarpa
,
F.
,
Chowdhury
,
R.
, and
Adhikari
,
S.
,
2011
, “
Thickness and In-Plane Elasticity of Graphane
,”
Phys. Lett. A
,
375
(
20
), pp.
2071
2074
.10.1016/j.physleta.2011.03.050
30.
Rappé
,
A. K.
,
Casewit
,
C. J.
,
Colwell
,
K. S.
,
Goddard
,
W. A.
, and
Skiff
,
W. M.
,
1992
, “
UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations
,”
J. Am. Chem. Soc.
,
114
(
25
), pp.
10024
10035
.10.1021/ja00051a040
31.
Mayo
,
S. L.
,
Olafson
,
B. D.
, and
Goddard
III,
W. A.
,
1990
, “
DREIDING: A Generic Force Field for Molecular Simulations
,”
J. Phys. Chem.
,
94
(26), pp.
8897
8909
.10.1021/j100389a010
32.
Zdravković
,
S.
, and
Satarić
,
M. V.
,
2011
, “
Transverse Interaction in DNA Molecule
,”
Biosystems
,
105
(
1
), pp.
10
13
.10.1016/j.biosystems.2011.02.005
33.
Scarpa
,
F.
, and
Adhikari
,
S.
,
2008
, “
A Mechanical Equivalence for the Poisson's Ratio and Thickness of c–c Bonds in Single Wall Carbon Nanotubes
,”
J. Phys. D
,
41
(8), p.
085306
.10.1088/0022-3727/41/8/085306
34.
Boldrin
,
L.
,
Scarpa
,
F.
,
Chowdhury
,
R.
, and
Adhikari
,
S.
,
2011
, “
Effective Mechanical Properties of Hexagonal Boron Nitride Nanosheets
,”
Nanotechnology
,
22
(
50
), p.
505702
.10.1088/0957-4484/22/50/505702
35.
Kaneko
,
T.
,
1974
. “
On Timoshenko's Correction for Shear in Vibrating Beams
,”
J. Phys. D
,
8
, p.
1927
.10.1088/0022-3727/8/16/003
36.
ANSYS
,
2010
,
Release 13.0 Documentation
,
Southpointe
,
Canonsburg, PA
.
37.
Leung
,
A.
,
Guo
,
X.
,
He
,
X.
,
Jiang
,
H.
, and
Huang
,
Y.
,
2006
, “
Postbuckling of Carbon Nanotubes by Atomic-Scale Finite Element
,”
J. Appl. Phys.
,
99
(12), p.
124308
.10.1063/1.2206607
38.
Frisch
,
M. J.
,
Trucks
,
G. W.
,
Schlegel
,
H. B.
,
Scuseria
,
G. E.
,
Robb
,
M. A.
,
Cheeseman
,
J. R.
,
Scalmani
,
G.
,
Barone
,
V.
,
Mennucci
,
B.
,
Petersson
,
G. A.
,
Nakatsuji
,
H.
,
Caricato
,
M.
,
Li
,
X.
,
Hratchian
,
H. P.
,
Izmaylov
,
A. F.
,
Bloino
,
J.
,
Zheng
,
G.
,
Sonnenberg
,
J. L.
,
Hada
,
M.
,
Ehara
,
M.
,
Toyota
,
K.
,
Fukuda
,
R.
,
Hasegawa
,
J.
,
Ishida
,
M.
,
Nakajima
,
T.
,
Honda
,
Y.
,
Kitao
,
O.
,
Nakai
,
H.
,
Vreven
,
T.
,
Montgomery
, Jr.,
J. A.
,
Peralta
,
J. E.
,
Ogliaro
,
F.
,
Bearpark
,
M.
,
Heyd
,
J. J.
,
Brothers
,
E.
,
Kudin
,
K. N.
,
Staroverov
,
V. N.
,
Kobayashi
,
R.
,
Normand
,
J.
,
Raghavachari
,
K.
,
Rendell
,
A.
,
Burant
,
J. C.
,
Iyengar
,
S. S.
,
Tomasi
,
J.
,
Cossi
,
M.
,
Rega
,
N.
,
Millam
,
J. M.
,
Klene
,
M.
,
Knox
,
J. E.
,
Cross
,
J. B.
,
Bakken
,
V.
,
Adamo
,
C.
,
Jaramillo
,
J.
,
Gomperts
,
R.
,
Stratmann
,
R. E.
,
Yazyev
,
O.
,
Austin
,
A. J.
,
Cammi
,
R.
,
Pomelli
,
C.
,
Ochterski
,
J. W.
,
Martin
,
R. L.
,
Morokuma
,
K.
,
Zakrzewski
,
V. G.
,
Voth
,
G. A.
,
Salvador
,
P.
,
Dannenberg
,
J. J.
,
Dapprich
,
S.
,
Daniels
,
A. D.
,
Farkas
,
O.
,
Foresman
,
J. B.
,
Ortiz
,
J. V.
,
Cioslowski
,
J.
, and
Fox
,
D. J.
,
2009
,
Gaussian 09, Revision A.1
,
Gaussian, Inc.
,
Pittsburgh, PA
.
39.
Rappé
,
A. K.
, and
Goddard
,
W. A.
,
1991
. “
Charge Equilibration for Molecular-Dynamics Simulations
,”
J. Phys. Chem.
,
95
(
8
), pp.
3358
3363
.10.1021/j100161a070
40.
Chowdhury
,
R.
,
Adhikari
,
S.
,
Wang
,
C. Y.
, and
Scarpa
,
F.
,
2010
, “
A Molecular Mechanics Approach for the Vibration of Single Walled Carbon Nanotubes
,”
Comput. Mater. Sci.
,
48
(
4
), pp.
730
735
.10.1016/j.commatsci.2010.03.020
41.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K. C.
,
2006
, “
Thickness of Graphene and Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
,
74
(24), p.
245413
.10.1103/PhysRevB.74.245413
42.
Batra
,
R.
, and
Gupta
,
S.
,
2008
, “
Wall Thickness and Radial Breathing Modes of Single-Walled Carbon Nanotubes
,”
ASME J. Appl. Mech.
,
75
(
6
), p.
061010
.10.1115/1.2965370
43.
Hemmasizadeh
,
A.
,
Mahzoon
,
M.
,
Hadi
,
E.
, and
Khandan
,
R.
,
2008
, “
A Method for Developing the Equivalent Continuum Model of a Single Layer Graphene Sheet
,”
Thin Solid Films
,
516
(
21
), pp.
7636
7640
.10.1016/j.tsf.2008.05.040
44.
Blevins
,
R. D.
,
1979
,
Formulas for Natural Frequency and Mode Shape
,
Van Nostrand
,
NY
.
45.
Lyon
,
R. H.
, and
DeJong
,
R. G.
,
1995
,
Theory and Application of Statistical Energy Analysis
,
2nd ed.
,
Butterworth-Heinemann
,
Boston, MA
.
46.
Smith
,
S.
,
Cui
,
Y.
, and
Bustamante
,
C.
,
1996
, “
Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules
,”
Science
,
271
(
5250
), pp.
795
799
.10.1126/science.271.5250.795
47.
Morii
,
T.
,
Mizuno
,
R.
,
Haruta
,
H.
, and
Okada
,
T.
,
2004
, “
An AFM Study of the Elasticity of DNA Molecules
,”
Thin Solid Films
,
464–465
, pp.
456
458
.10.1016/j.tsf.2004.06.066
48.
Bloom
,
K.
,
2007
. “
Beyond the Code: The Mechanical Properties of DNA as They Relate to Mitosis
,”
Chromosoma
,
117
(
2
), pp.
103
110
.10.1007/s00412-007-0138-0
49.
Inman
,
D. J.
,
2003
,
Engineering Vibration
,
Prentice Hall PTR
,
NJ
.
50.
Noy
,
A.
, and
Golestanian
,
R.
,
2012
, “
Length Scale Dependence of DNA Mechanical Properties
,”
Phys. Rev. Lett.
,
109
(22), p.
228101
.10.1103/PhysRevLett.109.228101
You do not currently have access to this content.