The combined effects of viscous and Joule heating on the stagnation point flow of a nanofluid through a stretching/shrinking sheet in the presence of homogeneous–heterogeneous reactions are investigated. The nanoparticle volume fraction model is used to describe the nanofluid. In this study, the density temperature relation is nonlinear which causes a nonlinear convective heat transfer. The surface of the sheet is assumed to be convectively heated with a hot fluid. The governing nonlinear differential equations are solved using the successive linearization method (SLM), and the results are validated by comparison with numerical approximations obtained using the Matlab in-built boundary value problem solver bvp4c and with existing results in literature. The nanofluid problem finds applications in heat transfer devices where the density and temperature relations are complex and the viscosity of the fluid has significant effect on the heat transfer rate.

References

References
1.
Buongiorno
,
J.
, and
Hu
,
W.
,
2005
, “
Nanofluid Coolants for Advanced Nuclear Power Plants
,”
Proceedings of ICAPP’05
,
Seoul
, S. Korea, Paper No. 5705.
2.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
, pp.
2252
2254
.10.1063/1.1408272
3.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquids by Dispersing Ultra-Fine Particles
,”
Netsu Bussei
,
7
, pp.
227
233
.10.2963/jjtp.7.227
4.
Das
,
S. K.
, and
Choi
,
S. U. S.
,
2009
, “
A Review of Heat Transfer in Nanofluids
,”
Adv. Heat Transfer
,
41
, pp.
81
197
.10.1016/S0065-2717(08)41002-X
5.
Wang
,
X. Q.
, and
Mazumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
, pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
6.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Pradeep
,
T.
,
2008
,
Nanofluids: Science and Technology
,
Wiley
,
Hoboken, NJ
.
7.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
,
I.
,
2011
, “
Stagnation-Point Flow Over a Stretching/Shrinking Sheet in a Nanofluid
,”
Nanoscale Res. Lett.
,
6
(
623
).10.1186/1556-276X-6-623
8.
Bachok
,
N.
,
Ishak
,
A.
,
Nazar
,
R.
, and
Senu
,
N.
,
2013
, “
Stagnation-Point Flow Over a Permeable Stretching/Shrinking Sheet in a Copper-Water Nanofluid
,”
Boundary Value Probl.
,
2013
(
39
), pp.
1
10
.10.1186/1687-2770-2013-39
9.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
, I
.
,
2013
, “
Boundary Layer Stagnation-Point Flow Toward a Stretching/Shrinking Sheet in a Nanofluid
,”
ASME J. Heat Transfer
,
135
, p.
054501
.10.1115/1.4023303
10.
Ibrahim
,
W.
,
Shankar
,
B.
, and
Nandeppanavar
,
M. M.
,
2013
, “
MHD Stagnation Point Flow and Heat Transfer Due to Nanofluid Towards a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
56
, pp.
1
9
.10.1016/j.ijheatmasstransfer.2012.08.034
11.
Chamkha
,
A. J.
,
Rashad
,
A. M.
, and
Al-Meshaiei
,
E.
,
2011
, “
Melting Effect on Unsteady Hydromagnetic Flow of a Nanofluid Past a Stretching Sheet
,”
Int. J. Chem. Reactor Eng.
,
9
, p.
A113
.10.2202/1542-6580.2613
12.
Bég
,
O. A.
,
Khan
,
M. S.
,
Karim
, I
.
,
Alam
,
M. M.
, and
Ferdows
,
M.
,
2013
, “
Explicit Numerical Study of Unsteady Hydromagnetic Mixed Convective Nanofluid Flow From an Exponentially Stretching Sheet in Porous Media
,”
Appl. Nanosci.
10.1007/s13204-013-0275-0
13.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Therm. Sci.
,
49
, pp.
243
247
.10.1016/j.ijthermalsci.2009.07.015
14.
Das
,
K
.,
2013
, “
Mixed Convection Stagnation Point Flow and Heat Transfer of Cu-Water Nanofluids Towards a Shrinking Sheet
,”
Heat Transfer Asian Res.
,
42
(
3
), pp.
230
242
.10.1002/htj.21037
15.
Pakravan
,
H. A.
, and
Yaghoubi
,
M.
,
2011
, “
Combined Thermophoresis, Brownian Motion and Dufour Effects on Natural Convection of Nanofluids
,”
Int. J. Therm. Sci.
,
50
, pp.
394
402
.10.1016/j.ijthermalsci.2010.03.007
16.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2011
, “
Double-Diffusive Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Therm. Sci.
,
50
, pp.
712
717
.10.1016/j.ijthermalsci.2011.01.003
17.
Partha
,
M. K.
,
2010
, “
Nonlinear Convection in a Non-Darcy Porous Medium
,”
Appl. Math. Mech.
,
31
(
5
), p.
565
574
.10.1007/s10483-010-0504-6
18.
Barrow
,
H.
, and
Rao
,
T. L. S.
,
1971
, “
The Effect of Variable Beta on Free Convection
,”
Br. Chem. Eng.
,
16
, pp.
704
709
.
19.
Brown
,
A
.,
1975
, “
The Effect of Laminar Free Convection Heat Transfer of the Temperature Dependence of the Coefficient of Volumetric Expansion
,”
ASME J. Heat Transfer
,
97
, pp.
133
135
.10.1115/1.3450262
20.
Prasad
,
K. V.
,
Vajravelu
,
K.
, and
van Gorder
,
R. A.
,
2011
, “
Non-Darcian Flow and Heat Transfer Along a Permeable Vertical Surface With Nonlinear Density Temperature Variation
,”
Acta Mech.
,
220
, pp.
139
154
.10.1007/s00707-011-0474-2
21.
Kameswaran
,
P. K.
,
Narayana
,
M.
,
Sibanda
,
P.
, and
Murthy
,
P. V. S. N.
,
2012
, “
Hydromagnetic Nanofluid Flow due to a Stretching or Shrinking Sheet With Viscous Dissipation and Chemical Reaction Effect
,”
Int. J. Heat Mass Transfer
,
55
, pp.
7587
7595
.10.1016/j.ijheatmasstransfer.2012.07.065
22.
Hady
,
F. M.
,
Ibrahim
,
F. S.
,
Abdel-Gaied
,
S. M.
, and
Eid
,
M. R.
,
2012
, “
Radiation Effect on Viscous Flow of a Nanofluid and Heat Transfer Over a Nonlinearly Stretching Sheet
,”
Nanoscale Res. Lett.
,
7
(
229
).10.1186/1556-276X-7-229
23.
Khan
,
M. S.
,
Karim
, I
.
,
Ali
,
L. E.
, and
Islam
,
A.
,
2012
, “
Unsteady MHD Free Convection Boundary-Layer Flow of a Nanofluid Along a Stretching Sheet With Thermal Radiation and Viscous Dissipation Effects
,”
Int. Nano Lett.
,
2
(
24
), pp.
1
9
.10.1186/2228-5326-2-24
24.
Makinde
,
O. D.
, and
Aziz
,
A.
,
2011
, “
Boundary Layer Flow of a Nanofluid Past a Stretching Sheet With a Convective Boundary Condition
,”
Int. J. Therm. Sci.
,
50
, pp.
1326
1332
.10.1016/j.ijthermalsci.2011.02.019
25.
Ibrahim
,
W.
, and
Shanker
,
B.
,
2012
, “
Boundary-Layer Flow and Heat Transfer of Nanofluid Over a Vertical Plate With Convective Surface Boundary Condition
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081203
.10.1115/1.4007075
26.
Olanrewaju
,
A. M.
, and
Makinde
,
O. D.
,
2013
, “
On Boundary Layer Stagnation Point Flow of a Nanofluid Over a Permeable Flat Surface With Newtonian Heating
,”
Chem. Eng. Commun.
,
200
, pp.
836
852
.10.1080/00986445.2012.721825
27.
Merkin
,
J. H.
,
1996
, “
A Model for Isothermal Homogeneous-Heterogeneous Reactions in Boundary Layer Flow
,”
Math. Comput. Model.
,
24
(
8
), pp.
125
136
.10.1016/0895-7177(96)00145-8
28.
Chaudhary
,
M. A.
, and
Merkin
,
J. H.
,
1995
, “
A Simple Isothermal Model for Homogeneous-Heterogeneous Reactions in Boundary Layer Flow: I. Equal Diffusivities
,”
Fluid Dyn. Res.
,
16
, pp.
311
333
.10.1016/0169-5983(95)00015-6
29.
Khan
,
W. A.
, and
Pop
, I
.
,
2010
, “
Flow Near the Two-Dimensional Stagnation Point on an Infinite Permeable Wall With a Homogeneous-Heterogeneous Reaction
,”
Commun. Nonlinear. Sci. Numer. Simul.
,
15
(
11
), pp.
3435
3443
.10.1016/j.cnsns.2009.12.022
30.
Khan
,
W. A.
, and
Pop
, I
.
,
2012
, “
Effects of Homogeneous-Heterogeneous Reactions on the Viscoelastic Fluid Toward a Stretching Sheet
,”
ASME J. Heat Transfer
,
134
, p.
064506
.10.1115/1.4006016
31.
Kameswaran
,
P. K.
,
Shaw
,
S.
,
Sibanda
,
P.
, and
Murthy
,
P. V. S. N.
,
2013
, “
Homogeneous-Heterogeneous Reactions in a Nanofluid Flow due to a Porous Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
57
, pp.
465
472
.10.1016/j.ijheatmasstransfer.2012.10.047
32.
Kameswaran
,
P. K.
,
Sibanda
,
P.
,
Ram Reddy
,
C.
, and
Murthy
,
P. V. S. N.
,
2013
, “
Dual Solutions of Stagnation-Point Flow of a Nanofluid Over a Stretching Surface
,”
Boundary Value Probl.
, 2013:188.10.1186/1687-2770-2013-188
33.
Cramer
,
K.
, and
Pai
,
S.
,
1973
,
Magnetofluid Dynamics for Engineers and Applied Physicists
,
McGraw-Hill
,
New York
.
34.
Meyer
,
R. C.
,
1958
, “
On Reducing Aerodynamic Heat-Transfer Rates by Magnetohydrodynamic Techniques
,”
J. Aerosp. Sci.
,
25
, pp.
561
566
.10.2514/8.7781
35.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
, pp.
571
581
.10.1063/1.1700493
36.
Aminossadati
,
S. M.
, and
Ghasemi
,
B.
,
2009
, “
Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid-Filled Enclosure
,”
Eur. J. Mech. B
,
28
(
5
), pp.
630
640
.10.1016/j.euromechflu.2009.05.006
37.
Garnett
,
J. C. M.
,
1904
, “
Colours in Metal Glasses and in Metallic Films
,”
Philos. Trans. R. Soc. London, Ser. A
,
203
, pp.
385
420
.10.1098/rsta.1904.0024
38.
Guérin
,
C. A.
,
Mallet
,
P.
, and
Sentenac
,
A.
,
2006
, “
Effective-Medium Theory for Finite-Size Aggregates
,”
J. Opt. Soc. Am. A
,
23
(
2
), pp.
349
358
.10.1364/JOSAA.23.000349
39.
Narayana
,
M.
,
Khidir
,
A. A.
,
Sibanda
,
P.
, and
Murthy
,
P. V. S. N.
,
2013
, “
Soret Effect on the Natural Convection From a Vertical Plate in a Thermally Stratified Porous Medium Saturated With Non-Newtonian Liquid
,”
ASME J. Heat Transfer
,
135
, p.
032501
.10.1115/1.4007880
40.
Makukula
,
Z. G.
,
Sibanda
,
P.
, and
Motsa
,
S. S.
,
2010
, “
A Novel Numerical Technique for Two-Dimensional Laminar Flow Between Two Moving Porous Walls
,”
Math. Probl. Eng.
,
2010
, p.
528956
.10.1155/2010/528956
41.
Makukula
,
Z. G.
,
Sibanda
,
P.
, and
Motsa
,
S. S.
,
2010
, “
On New Solutions for Heat Transfer in a Visco-Elastic Fluid Between Parallel Plates
,”
Int. J. Math. Model. Methods Appl. Sci.
,
4
, pp.
221
230
.
You do not currently have access to this content.