Due to their promising mechanical and electrical properties, carbon nanotubes (CNTs) have the potential to be employed in many nano/microelectronic applications e.g., through silicon vias (TSVs), interconnects, transistors, etc. In particular, use of CNT bundles inside annular cylinders of copper (Cu) as TSV is proposed in this study. To evaluate mechanical integrity of CNT-Cu composite material, a molecular dynamics (MD) simulation of the interface between CNT and Cu is conducted. Different arrangements of single wall carbon nanotubes (SWCNTs) have been studied at interface of a Cu slab. Pullout forces have been applied to a SWCNT while Cu is spatially fixed. This study is repeated for several different cases where multiple CNT strands are interfaced with Cu slab. The results show similar behavior of the pull-out-displacement curves. After pull-out force reaches a maximum value, it oscillates around an average force with descending amplitude until the strand/s is/are completely pulled-out. A linear relationship between pull-out forces and the number of CNT strands was observed. Second order interaction effect was found to be negligible when multiple layers of CNTs were studied at the interface of Cu. C–Cu van der Waals (vdW) interaction was found to be much stronger than C–C vdW's interactions. Embedded length has no significance on the average pull-out force. However, the amplitude of oscillations increases as the length of CNTs increases. As expected when one end of CNT strand was fixed, owing to its extraordinary strength, large amount of force was required to pull it out. Finally, an analytical relationship is proposed to determine the interfacial shear strength between Cu and CNT bundle.

References

References
1.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
(
6348
), pp.
56
58
.10.1038/354056a0
2.
Jorio
,
A.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M.
,
2008
, Topics in Applied Physics, (Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications) Springer, Berlin, Germany.
3.
Saito
,
S.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
,
1998
,
Physical Properties of Carbon Nanotubes
,
Imperial College Press
,
London
.
4.
Harris
,
P. J. F.
,
2009
,
Carbon Nanotube Science: Synthesis, Properties and Applications
,
Cambridge University
,
Cambridge, UK
.
5.
Maiti
,
A.
, and
Ricca
,
A.
,
2004
, “
Metal–Nanotube Interactions–Binding Energies and Wetting Properties
,”
Chem. Phys. Lett.
,
395
(
1–3
), pp.
7
11
.10.1016/j.cplett.2004.07.024
6.
Nemec
,
N.
,
Tománek
,
D.
, and
Cuniberti
,
G.
,
2006
, “
Contact Dependence of Carrier Injection in Carbon Nanotubes: An Ab Initio Study
,”
Phys. Rev. Lett.
,
96
(
7
), p.
076802
.10.1103/PhysRevLett.96.076802
7.
Banhart
,
F.
,
2009
, “
Interactions Between Metals and Carbon Nanotubes: At the Interface Between Old and New Materials
,”
Nanoscale
,
1
(
2
), pp.
201
213
.10.1039/b9nr00127a
8.
Tsuda
,
T.
,
Ogasawara
,
T.
,
Deng
,
F.
, and
Takeda
,
N.
,
2011
, “
Direct Measurements of Interfacial Shear Strength of Multi-Walled Carbon Nanotube/PEEK Composite Using a Nano-Pullout Method
,”
Compos. Sci. Technol.
,
71
(
10
), pp.
1295
1300
.10.1016/j.compscitech.2011.04.014
9.
Wernik
,
J. M.
,
Cornwell-Mott
,
B. J.
, and
Meguid
,
S. A.
,
2012
, “
Determination of the Interfacial Properties of Carbon Nanotube Reinforced Polymer Composites Using Atomistic-Based Continuum Model
,”
Int. J. Solid Struct.
,
49
(
13
), pp.
1852
1863
.10.1016/j.ijsolstr.2012.03.024
10.
Kim
,
B.-H.
,
Lee
,
K.-R.
,
Chung
,
Y.-C.
, and
Gunn
,
L. J.
,
2012
, “
Effects of Interfacial Bonding in the Si-Carbon Nanotube Nanocomposite: A Molecular Dynamics Approach
,”
J. Appl. Phys.
,
112
(
4
), p.
044312
.10.1063/1.4748133
11.
Toprak
,
K.
, and
Bayazitoglu
,
Y.
,
2013
, “
Numerical Modeling of a CNT–Cu Coaxial Nanowire in a Vacuum to Determine the Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
61
, pp.
172
175
.10.1016/j.ijheatmasstransfer.2013.01.082
12.
Hartmann
,
S.
,
Wunderle
,
B.
, and
Hölck
,
O.
,
2012
, “
Pull-Out Testing of SWCNTs Simulated by Molecular Dynamics
,”
Int. J. Theory Appl. Nanotechnol.
,
1
(
1
), pp.
59
65
.10.11159/ijtan.2012.009
13.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
14.
Center for Atomic-Scale Materials Design (CAMd), 2012, ATOMIC SIMULATION ENVIRONMENT, DTU Physics, Technical University of Denmark, Lyngby, Denmark.
15.
Acklandab
,
G. J.
,
Tichyc
,
G.
,
Vitekd
,
V.
, and
Finnisa
,
M. W.
,
1987
, “
Simple N-Body Potentials for the Noble Metals and Nickel
,”
Philos. Mag. A
,
56
(
6
), pp.
735
756
.10.1080/01418618708204485
16.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
72
86
.10.1063/1.481208
17.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys. Condens. Matter
,
14
(
4
), pp.
783
802
.10.1088/0953-8984/14/4/312
18.
Hartmann
,
S.
,
Hblck
,
O.
, and
Wunderle
,
B.
,
2013
, “
Molecular Dynamics Simulations for Mechanical Characterization of CNT IGoid Interface and its Bonding Strength
,”
14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)
, pp.
1
8
.
19.
Liew
,
K.
,
Wong
,
C.
,
He
,
X.
,
Tan
,
M.
, and
Meguid
,
S.
,
2004
, “
Nanomechanics of Single and Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
,
69
(
11
), p.
115429
.10.1103/PhysRevB.69.115429
20.
Wong
,
C. H.
, and
Vijayaraghavan
,
V.
,
2012
, “
Nanomechanics of Nonideal Single- and Double-Walled Carbon Nanotubes
,”
J. Nanomater.
,
2012
, pp.
1
9
.10.1155/2012/490872
21.
Guo
,
Y.
, and
Guo
,
W.
,
2006
, “
Structural Transformation of Partially Confined Copper Nanowires Inside Defected Carbon Nanotubes
,”
Nanotechnology
,
17
(
18
), pp.
4726
4730
.10.1088/0957-4484/17/18/033
22.
Zhao
,
J.
,
Buldum
,
A.
,
Han
,
J.
, and
Lu
,
J.
,
2002
, “
Gas Molecule Adsorption in Carbon Nanotubes and Nanotube Bundles
,”
Nanotechnology
,
13
, pp.
195
200
.10.1088/0957-4484/13/2/312
23.
Volkov
,
A.
,
Salaway
,
R.
, and
Zhigilei
,
L.
,
2013
, “
Atomistic Simulations, Mesoscopic Modeling, and Theoretical Analysis of Thermal Conductivity of Bundles Composed of Carbon Nanotubes
,”
J. Appl. Phys.
,
114
(10), p.
104301
.10.1063/1.4819911
24.
Li
,
C.
,
Liu
,
Y.
,
Yao
,
X.
,
Ito
,
M.
,
Noguchi
,
T.
, and
Zheng
,
Q.
,
2010
, “
Interfacial Shear Strengths Between Carbon Nanotubes
,”
Nanotechnology
,
21
(
11
), p.
115704
.10.1088/0957-4484/21/11/115704
25.
Berendsen
,
H. J. C.
,
Postma
,
J. P. M.
,
van Gunsteren
,
W. F.
,
DiNola
,
A.
, and
Haak
,
J. R.
,
1984
, “
Molecular Dynamics With Coupling to an External Bath
,”
J. Chem. Phys.
,
81
, pp.
84
93
.10.1063/1.448118
26.
Yhteenveto suomeksi
,
2008
, “Introduction to Atomistic Simulations,” http://www.physics.helsinki.fi/courses/s/compnano/exercises/exercise01.pdf
27.
“Temp/Berendsen—LAMMPS Documentation
,” http://lammps.sandia.gov/doc/fix_temp_berendsen.html
28.
Bennewitz
,
R.
,
Gyalog
,
T.
,
Guggisberg
,
M.
,
Bammerlin
,
M.
,
Meyer
,
E.
, and
Güntherodt
,
H.-J.
,
1999
, “
Atomic-Scale Stick-Slip Processes on Cu(111)
,”
Phys. Rev. B
,
60
(
16
), p.
R11301
.10.1103/PhysRevB.60.R11301
29.
Gao
,
J.
,
Luedtke
,
W. D.
,
Gourdon
,
D.
,
Ruths
,
M.
,
Israelachvili
,
J. N.
, and
Landman
,
U.
,
2004
, “
Frictional Forces and Amontons' Law: From the Molecular to the Macroscopic Scale
,”
J. Phys. Chem. B
,
108
(
11
), pp.
3410
3425
.10.1021/jp036362l
30.
Li
,
Y.
,
Liu
,
Y.
,
Peng
,
X.
,
Yan
,
C.
,
Liu
,
S.
, and
Hu
,
N.
,
2011
, “
Pull-Out Simulations on Interfacial Properties of Carbon Nanotube-Reinforced Polymer Nanocomposites
,”
Comput. Mater. Sci.
,
50
(
6
), pp.
1854
1860
.10.1016/j.commatsci.2011.01.029
31.
Li
,
Y.
,
Hu
,
N.
,
Yamamoto
,
G.
,
Wang
,
Z.
,
Hashida
,
T.
,
Asanuma
,
H.
,
Dong
,
C.
,
Okabe
,
T.
,
Arai
,
M.
, and
Fukunaga
,
H.
,
2010
, “
Molecular Mechanics Simulation of the Sliding Behavior Between Nested Walls in a Multi-Walled Carbon Nanotube
,”
Carbon
,
48
(
10
), pp.
2934
2940
.10.1016/j.carbon.2010.04.031
32.
Liu
,
S.
,
Hu
,
N.
,
Yamamoto
,
G.
,
Cai
,
Y.
,
Zhang
,
Y.
,
Liu
,
Y.
,
Li
,
Y.
,
Hashida
,
T.
, and
Fukunaga
,
H.
,
2011
, “
Investigation on CNT/Alumina Interface Properties Using Molecular Mechanics Simulations
,”
Carbon
,
49
(
11
), pp.
3701
3704
.10.1016/j.carbon.2011.04.059
You do not currently have access to this content.