Avoiding collateral damage to healthy tissues during the high intensity focused ultrasound (HIFU) ablation of malignant tumors is one of the major challenges for effective thermal therapy. Such collateral damage can originate out of the need for using higher acoustic powers to treat deep seated or highly vascularized tumors. The objective of this study is to assess the utility of using magnetic nanoparticles (mNPs) during HIFU procedures to locally enhance heating at low powers, thereby reducing the likelihood of collateral thermal damage and undesired destruction due to cavitation. Tissue phantoms with 0% (control), 1% and 3% mNPs concentrations by volume were fabricated. Each tissue phantom was embedded with four thermocouples (TCs) and sonicated using transducer acoustic powers of 5.15 W, 9.17 W, and 14.26 W. The temperature profiles during the heating and cooling periods were recorded for each embedded TC. The measured transient temperature profiles were used for thermal-dose calculations. The increase in the concentration of mNPs in the tissue phantoms, from 0% to 3%, resulted in the rise in the peak temperatures for all the TCs for each acoustic power. The thermal dose also increased with the rise in the concentration of mNPs in the tissue phantoms. For the highest applied acoustic power (14.26 W), the peak temperature at TC 1 (T1) in tissue phantoms with 1% and 3% mNPs concentrations increased (with respect to tissue phantom with 0% (control) mNPs concentration) by 1.59× and 2.09×, respectively. For an acoustic power of 14.26 W, the time required to achieve cellular necrosis as defined by a 240 equivalent min thermal dose was approximately 75 s in the absence of mNPs, 14 s for the 1% concentration, and 8 s for the 3% concentration. Magnetic nanoparticles have the potential to significantly reduce the time for HIFU thermal-ablation procedures. They can also decrease the likelihood of collateral damage by the propagating beam in HIFU procedures by reducing the intensity required to achieve cellular necrosis.

References

References
1.
Curra
,
F. P.
, and
Crum
,
L. A.
,
2003
, “
Therapeutic Ultrasound: Surgery and Drug Delivery
,”
Acoust. Sci. Technol.
,
24
(
6
), pp.
343
348
.10.1250/ast.24.343
2.
Ter Haar
,
G.
,
2001
, “
Acoustic Surgery
,”
Phys. Today
,
54
(
12
), pp.
29
34
.10.1063/1.1445545
3.
Wu
,
J.
, and
Du
,
G.
,
1990
, “
Temperature Elevation Generated by a Focused Gaussian Beam of Ultrasound
,”
Ultrasound Med. Biol.
,
16
(
5
), pp.
489
498
.10.1016/0301-5629(90)90171-8
4.
Curra
,
F. P.
,
Mourad
,
P. D.
,
Khokhlova
,
V. A.
,
Cleveland
,
R. O.
, and
Crum
,
L. A.
,
2000
, “
Numerical Simulations of Heating Patterns and Tissue Temperature Response Due to High-Intensity Focused Ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
47
(
4
), pp.
1077
1089
.10.1109/58.852092
5.
Soneson
,
J. E.
,
2009
, “
A User-Friendly Software Package for HIFU Simulation
,”
AIP Conf. Proc.
,
1113
(
1
), pp.
165
169
.
6.
Myers
,
M. R.
, and
Soneson
,
J. E.
,
2009
, “
Temperature Modes for Nonlinear Gaussian Beams
,”
J. Acoust. Soc. Am.
,
126
(
1
), pp.
425
433
.10.1121/1.3148204
7.
Dibaji
,
S. A. R.
,
Banerjee
,
R. K.
,
Soneson
,
J. E.
, and
Myers
,
M. R.
,
2013
, “
Nonlinear Derating of High-Intensity Focused Ultrasound Beams Using Gaussian Modal Sums
,”
J. Acoust. Soc. Am.
,
134
(
5
), pp.
3435
3445
.10.1121/1.4824336
8.
Bailey
,
M. R.
,
Couret
,
L. N.
,
Sapozhnikov
,
O. A.
,
Khokhlova
,
V. A.
,
ter Haar
,
G.
,
Vaezy
,
S.
,
Shi
,
X.
,
Martin
,
R.
, and
Crum
,
L. A.
,
2001
, “
Use of Overpressure to Assess the Role of Bubbles in Focused Ultrasound Lesion Shape in vitro
,”
Ultrasound Med. Biol.
,
27
(
5
), pp.
695
708
.10.1016/S0301-5629(01)00342-8
9.
McLaughlan
,
J.
,
Rivens
,
I.
,
Leighton
,
T.
, and
ter Haar
,
G.
,
2010
, “
A Study of Bubble Activity Generated in Ex Vivo Tissue by High Intensity Focused Ultrasound
,”
Ultrasound Med. Biol.
,
36
(
8
), pp.
1327
1344
.10.1016/j.ultrasmedbio.2010.05.011
10.
Kyriakou
,
Z.
,
Corral-Baques
,
M. I.
,
Amat
,
A.
, and
Coussios
,
C.-C.
,
2011
, “
HIFU-Induced Cavitation and Heating in Ex Vivo Porcine Subcutaneous Fat
,”
Ultrasound Med. Biol.
,
37
(
4
), pp.
568
579
.10.1016/j.ultrasmedbio.2011.01.001
11.
Dasgupta
,
S.
,
Das
,
P.
,
Wansapura
,
J.
,
Hariharan
,
P.
,
Pratt
,
R.
,
Witte
,
D.
,
Myers
,
M. R.
, and
Banerjee
,
R. K.
,
2011
, “
Reduction of Noise From MR Thermometry Measurements During HIFU Characterization Procedures
,”
ASME J. Nanotechnol. Eng. Med.
,
2
(
2
), p.
024501
.10.1115/1.4003861
12.
Mesiwala
,
A. H.
,
Farrell
,
L.
,
Wenzel
,
H. J.
,
Silbergeld
,
D. L.
,
Crum
,
L. A.
,
Winn
,
H. R.
, and
Mourad
,
P. D.
,
2002
, “
High-Intensity Focused Ultrasound Selectively Disrupts the Blood-Brain Barrier in vivo
,”
Ultrasound Med. Biol.
,
28
(
3
), pp.
389
400
.10.1016/S0301-5629(01)00521-X
13.
Solomon
,
S. B.
,
Nicol
,
T. L.
,
Chan
,
D. Y.
,
Fjield
,
T.
,
Fried
,
N.
, and
Kavoussi
,
L. R.
,
2003
, “
Histologic Evolution of High-Intensity Focused Ultrasound in Rabbit Muscle
,”
Invest. Radiol.
,
38
(
5
), pp.
293
301
.10.1097/01.RLI.0000066421.79958.96
14.
Köhler
,
M. O.
,
Mougenot
,
C.
,
Quesson
,
B.
,
Enholm
,
J.
,
Le Bail
,
B.
,
Laurent
,
C.
,
Moonen
,
C. T. W.
, and
Ehnholm
,
G. J.
,
2009
, “
Volumetric HIFU Ablation Under 3D Guidance of Rapid MRI Thermometry
,”
Med. Phys.
,
36
(
8
), pp.
3521
3535
.10.1118/1.3152112
15.
Quesson
,
B.
,
Laurent
,
C.
,
Maclair
,
G.
,
de Senneville
,
B. D.
,
Mougenot
,
C.
,
Ries
,
M.
,
Carteret
,
T.
,
Rullier
,
A.
, and
Moonen
,
C. T. W.
,
2011
, “
Real-Time Volumetric MRI Thermometry of Focused Ultrasound Ablation in vivo: A Feasibility Study in Pig Liver and Kidney
,”
NMR Biomed.
,
24
(
2
), pp.
145
153
.10.1002/nbm.1563
16.
Canney
,
M. S.
,
Bailey
,
M. R.
,
Crum
,
L. A.
,
Khokhlova
,
V. A.
, and
Sapozhnikov
,
O. A.
,
2008
, “
Acoustic Characterization of High Intensity Focused Ultrasound Fields: A Combined Measurement and Modeling Approach
,”
J. Acoust. Soc. Am.
,
124
(
4
), pp.
2406
2420
.10.1121/1.2967836
17.
Chen
,
D.
,
Fan
,
T.
,
Zhang
,
D.
, and
Wu
,
J.
,
2009
, “
A Feasibility Study of Temperature Rise Measurement in a Tissue Phantom as an Alternative Way for Characterization of the Therapeutic High Intensity Focused Ultrasonic Field
,”
Ultrasonics
,
49
(
8
), pp.
733
742
.10.1016/j.ultras.2009.05.008
18.
Farny
,
C. H.
,
Holt
,
R. G.
, and
Roy
,
R. A.
,
2009
, “
Temporal and Spatial Detection of HIFU-Induced Inertial and Hot-Vapor Cavitation With a Diagnostic Ultrasound System
,”
Ultrasound Med. Biol.
,
35
(
4
), pp.
603
615
.10.1016/j.ultrasmedbio.2008.09.025
19.
King
,
R. L.
,
Yunbo
,
L.
,
Maruvada
,
S.
,
Herman
,
B. A.
,
Wear
,
K. A.
, and
Harris
,
G. R.
,
2011
, “
Development and Characterization of a Tissue-Mimicking Material for High-Intensity Focused Ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
58
(
7
), pp.
1397
1405
.10.1109/TUFFC.2011.1959
20.
Maruvada
,
S.
,
Liu
,
Y.
,
Pritchard
,
W.
,
Herman
,
B.
, and
Harris
,
G.
,
2012
, “
Comparative Study of Temperature Measurements in Ex Vivo Swine Muscle and a Tissue-Mimicking Material during High Intensity Focused Ultrasound Exposures
,”
Phys. Med. Biol.
,
57
(
1
), pp.
1
19
.10.1088/0031-9155/57/1/1
21.
Kennedy
,
J. E.
,
2005
, “
High-Intensity Focused Ultrasound in the Treatment of Solid Tumours
,”
Nat. Rev. Cancer
,
5
(
4
), pp.
321
327
.10.1038/nrc1591
22.
Dasgupta
,
S.
,
Wansapura
,
J.
,
Hariharan
,
P.
,
Pratt
,
R.
,
Witte
,
D.
,
Myers
,
M. R.
, and
Banerjee
,
R. K.
,
2010
, “
HIFU Lesion Volume as a Function of Sonication Time, as Determined by MRI, Histology, and Computations
,”
ASME J. Biomech. Eng.
,
132
(
8
), p.
081005
.10.1115/1.4001739
23.
Huang
,
J.
,
Holt
,
R. G.
,
Cleveland
,
R. O.
, and
Roy
,
R. A.
,
2004
, “
Experimental Validation of a Tractable Numerical Model for Focused Ultrasound Heating in Flow-Through Tissue Phantoms
,”
J. Acoust. Soc. Am.
,
116
(
4
), pp.
2451
2458
.10.1121/1.1787124
24.
ter Haar
,
G.
,
2008
, “
Harnessing the Interaction of Ultrasound With Tissue for Therapeutic Benefit: High-Intensity Focused Ultrasound
,”
Ultrasound Obstet. Gynecol.
,
32
(
5
), pp.
601
604
.10.1002/uog.6228
25.
Dasgupta
,
S.
,
Banerjee
,
R. K.
,
Hariharan
,
P.
, and
Myers
,
M. R.
,
2011
, “
Beam Localization in HIFU Temperature Measurements Using Thermocouples, With Application to Cooling by Large Blood Vessels
,”
Ultrasonics
,
51
(
2
), pp.
171
180
.10.1016/j.ultras.2010.07.007
26.
Luo
,
W.
,
Zhou
,
X.
,
Tian
,
X.
,
Ren
,
X.
,
Zheng
,
M.
,
Gu
,
K.
, and
He
,
G.
,
2006
, “
Enhancement of Ultrasound Contrast Agent in High-Intensity Focused Ultrasound Ablation
,”
Adv. Ther.
,
23
(
6
), pp.
861
868
.10.1007/BF02850207
27.
Tung
,
Y.-S.
,
Liu
,
H.-L.
,
Wu
,
C.-C.
,
Ju
,
K.-C.
,
Chen
,
W.-S.
, and
Lin
,
W.-L.
,
2006
, “
Contrast-Agent-Enhanced Ultrasound Thermal Ablation
,”
Ultrasound Med. Biol.
,
32
(
7
), pp.
1103
1110
.10.1016/j.ultrasmedbio.2006.04.005
28.
Yu
,
T.
,
Wang
,
G.
,
Hu
,
K.
,
Ma
,
P.
,
Bai
,
J.
, and
Wang
,
Z.
,
2004
, “
A Microbubble Agent Improves the Therapeutic Efficiency of High Intensity Focused Ultrasound: A Rabbit Kidney Study
,”
Urol. Res.
,
32
(
1
), pp.
14
19
.10.1007/s00240-003-0362-x
29.
Tran
,
B. C.
,
Jongbum
,
S.
,
Hall
,
T. L.
,
Fowlkes
,
J. B.
, and
Cain
,
C. A.
,
2003
, “
Microbubble-Enhanced Cavitation for Noninvasive Ultrasound Surgery
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
50
(
10
), pp.
1296
1304
.10.1109/TUFFC.2003.1244746
30.
Quanyi
,
L.
,
Liyuan
,
F.
,
Yan
,
Q.
,
Faqi
,
L.
, and
Zhibiao
,
W.
,
2008
, “
Role of Acoustic Interface Layer during High Intensity Focused Ultrasound Therapeutics
,”
J. Med. Coll. PLA
,
23
(
4
), pp.
223
227
.10.1016/S1000-1948(08)60046-5
31.
Ho
, V
. H. B.
,
Smith
,
M. J.
, and
Slater
,
N. K. H.
,
2011
, “
Effect of Magnetite Nanoparticle Agglomerates on the Destruction of Tumor Spheroids Using High Intensity Focused Ultrasound
,”
Ultrasound Med. Biol
,
37
(
1
), pp.
169
175
.10.1016/j.ultrasmedbio.2010.09.007
32.
Sun
,
Y.
,
Zheng
,
Y.
,
Ran
,
H.
,
Zhou
,
Y.
,
Shen
,
H.
,
Chen
,
Y.
,
Chen
,
H.
,
Krupka
,
T. M.
,
Li
,
A.
,
Li
,
P.
,
Wang
,
Z.
, and
Wang
,
Z.
,
2012
, “
Superparamagnetic PLGA-Iron Oxide Microcapsules for Dual-Modality US/MR Imaging and High Intensity Focused US Breast Cancer Ablation
,”
Biomaterials
,
33
(
24
), pp.
5854
5864
.10.1016/j.biomaterials.2012.04.062
33.
Wang
,
X.
,
Chen
,
H.
,
Zheng
,
Y.
,
Ma
,
M.
,
Chen
,
Y.
,
Zhang
,
K.
,
Zeng
,
D.
, and
Shi
,
J.
,
2013
, “
Au-Nanoparticle Coated Mesoporous Silica Nanocapsule-Based Multifunctional Platform for Ultrasound Mediated Imaging, Cytoclasis and Tumor Ablation
,”
Biomaterials
,
34
(
8
), pp.
2057
2068
.10.1016/j.biomaterials.2012.11.044
34.
Sapareto
,
S. A.
, and
Dewey
,
W. C.
,
1984
, “
Thermal Dose Determination in Cancer Therapy
,”
Int. J. Radiat. Oncol., Biol., Phys.
,
10
(
6
), pp.
787
800
.10.1016/0360-3016(84)90379-1
35.
Morris
,
H.
,
Rivens
, I
.
,
Shaw
,
A.
, and
Haar
,
G. T.
,
2008
, “
Investigation of the Viscous Heating Artefact Arising from the Use of Thermocouples in a Focused Ultrasound Field
,”
Phys. Med. Biol.
,
53
(
17
), pp.
4759
4776
.10.1088/0031-9155/53/17/020
36.
Righetti
,
R.
,
Kallel
,
F.
,
Stafford
,
R. J.
,
Price
,
R. E.
,
Krouskop
,
T. A.
,
Hazle
,
J. D.
, and
Ophir
,
J.
,
1999
, “
Elastographic Characterization of HIFU-Induced Lesions in Canine Livers
,”
Ultrasound Med. Biol.
,
25
(
7
), pp.
1099
1113
.10.1016/S0301-5629(99)00044-7
37.
Dąbek
,
L.
,
Hornowski
,
T.
,
Józefczak
,
A.
, and
Skumiel
,
A.
,
2013
, “
Ultrasonic Properties of Magnetic Nanoparticles with an Additional Biocompatible Dextrane Layer
,”
Arch. Acoust.
,
38
(
1
), pp.
93
98
.10.2478/aoa-2013-0011
38.
Hariharan
,
P.
,
Dibaji
,
S. A. R.
,
Banerjee
,
R. K.
,
Nagaraja
,
S.
, and
Myers
,
M. R.
,
2014
, “
Evaluation of Targeting Accuracy in Focused-Ultrasound Procedures, Using Remote Thermocouple Arrays
,”
J. Acoust. Soc. Am.
(submitted).
You do not currently have access to this content.