Environmental and economic concerns on use of cutting fluids have led to use of minimum quantity cooling lubrication (MQCL) system, which uses minute quantity of cutting fluids, demanding a specialized fluid with improved properties. Investigation of any newly developed cutting fluid would be complete if it is evaluated with respect to its machinability, environmental and economic aspects. The present work investigates the viscosity, machinability characteristics, environmental effects, and economic aspects of a newly developed nanocutting fluid with varying concentrations of graphite nanoparticles applied at different flow rates to machining operation. It is found that the machinability improved with respect to conventional cutting fluid and this improvement increased with increase in concentration of nanoinclusions in the range 0.1–0.5 wt. % and also with increase in the flow rate. A regression model is developed for nanocutting fluids to estimate tool wear when used in the range 0.1–0.5 wt. % at flow rates 5 ml/min to 15 ml/min. The biodegradability is found to decrease with inclusion of nanoparticles due to the inorganic nature of selected nanoparticle. But its application as MQCL is ecofriendly as the nanocutting fluid is not disposed to the environment and graphite in it is neither toxic nor hazardous. Based on economic aspect, MQCL application with conventional cutting fluid and few cases of nanocutting fluids are found to be economic compared to flood lubrication. So a compromise has to be obtained between the economic and machinability aspects to choose an optimum cutting fluid.

References

References
1.
Astakhov
,
V. P.
,
2008
, “
Ecological Machining: Near Dry Machining
,”
Book Machining: Fundamentals and Recent Advances
,
Springer
,
London
, pp.
195
223
.
2.
Shop Guide to Reduce the Waste of Metalworking Fluids, Institute of Advanced Manufacturing Sciences and Waste Reduction and Technology Transfer Foundation, http://www.wratt.org/pubs/Red%20Waste%20of%20Metalworking.pdf
3.
Skerlos
,
S. J.
, “
Environmentally Conscious Manufacturing at the Machine Tool
,”
Prevention of Metalworking Fluid Pollution
,
John Wiley & Sons
,
Hoboken, NJ
, pp.
95
122
.
4.
“Microlubrication in Metal Machining Operations,” Report No. 320-889-302, WMRC Reports.
5.
Heisel
,
U.
,
Lutz
,
M.
,
Spath
,
D.
,
Wassmer
,
R. A.
, and
Walter
,
U.
,
1994
, “
Application of Minimum Quantity Cooling Lubrication Technology in Cutting Processes
,”
Prod. Eng.
,
2
(
1
), pp.
49
54
.
6.
Yasir
,
A.
,
Che Hassan
,
C. H.
,
Jaharah
,
A. G.
,
Nagi
,
H. E.
,
Yanuar
,
B.
, and
Gusri
,
A. I.
,
2009
, “
Machinalibilty of Ti-6Al-4V Under Dry and Near Dry Condition Using Carbide Tools
,”
Open Ind. Manuf. Eng. J.
,
2
, pp.
1
9
.
7.
Wins
,
K. L. D.
,
Varadarajan
,
A. S.
, and
Ramamoorthy
,
B.
,
2010
, “
Optimization of Surface Milling of Hardened AISI4340 Steel With Minimal Fluid Application Using a High Velocity Narrow Pulsing Jet of Cutting Fluid
.”
Engineering
,
2
(
10
), pp.
793
801
.10.4236/eng.2010.210102
8.
Khan
,
M. M. A.
,
Mithu
,
M. A. H.
, and
Dhar
,
N. R.
,
2009
, “
Effects of Minimum Quantity Lubrication on Turning AISI 9310 Alloy Steel Using Vegetable Oil-Based Cutting Fluid
,”
J. Mater. Process. Technol.
,
209
(
15
), pp.
5573
5583
.10.1016/j.jmatprotec.2009.05.014
9.
Li
,
K. M.
, and
Chou
,
S. Y.
,
2010
, “
Experimental Evaluation of Minimum Quantity Lubrication in Near Micro-Milling
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2163
2170
.10.1016/j.jmatprotec.2010.07.031
10.
Lee
,
P. H.
,
Nam
,
J. S.
,
Li
,
C.
, and
Lee
,
S. W.
,
2012
, “
An Experimental Study on Micro-Grinding Process With Nanofluid Minimum Quantity Lubrication (MQL)
,”
Int. J. Precis. Eng. Manuf.
,
13
(
3
), pp.
331
338
.10.1007/s12541-012-0042-2
11.
Nam
,
J. S.
,
Lee
,
P. H.
, and
Lee
,
S. W.
,
2011
, “
Experimental Characterization of Micro-Drilling Process Using Nanofluid Minimum Quantity Lubrication
,”
Int. J. Mach. Tools Manuf.
,
51
(
7
), pp.
649
652
.10.1016/j.ijmachtools.2011.04.005
12.
Ewald
,
B.
, and
Kwon
,
P. Y.
,
2011
, “
Effect of Nano-Enhanced Lubricant in Minimum Quantity Lubrication Balling Milling
,”
J. Tribol.
,
133
,
pp 1
8
.
13.
Shen
,
B.
,
Malshe
,
A. P.
,
Kalita
,
P.
, and
Shih
,
A. J.
,
2008
, “
Performance of Novel MoS2 Nanoparticles Based Grinding Fluids in Minimum Quantity Lubrication Grinding
,”
Trans. NAMRI/SME
,
36
, pp.
357
364
.
14.
Mao
,
C.
,
Tang
,
X.
,
Zou
,
H.
,
Huang
,
X.
, and
Zhou
,
Z.
,
2012
, “
Investigation of Grinding Characteristic Using Nanofluid Minimum Quantity Lubrication
,”
Int. J. Precis. Eng. Manuf.
,
13
(
10
), pp.
1745
1752
.10.1007/s12541-012-0229-6
15.
Setti
,
D.
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2012
, “
Application of Nano Cutting Fluid Under Minimum Quantity Lubrication (MQL) Technique to Improve Grinding of Ti–6Al–4V Alloy
,”
Proceedings of World Academy of Science, Engineering and Technology (No. 70), World Academy of Science, Engineering and Technology
, pp.
512
516
.
16.
Samuel
,
J.
,
Rafiee
,
J.
,
Dhiman
,
P.
,
Yu
,
Z. Z.
, and
Koratkar
,
N.
,
2011
, “
Graphene Colloidal Suspensions as High Performance Semi-Synthetic Metal-Working Fluids
,”
J. Phys. Chem. C
,
115
(
8
), pp.
3410
3415
.10.1021/jp110885n
17.
Gerulová
,
K.
,
Amcha
,
P.
, and
Filická
,
S.
,
2010
, “
Preliminary Ecotoxicity and Biodegradability Assessment of Metalworking Fluids
,”
Res. Papers Faculty Mater. Sci. Technol. Slovak Univ. Technol.
,
18
(
29
), pp.
17
27
.
18.
Gannon
,
J. E.
,
Onyekewlu
, I
. U.
, and
Bennett
,
E. O.
,
1981
, “
BOD, COD and TOC Studies of Petroleum Base Cutting Fluids
,”
Water, Air, Soil Pollution
,
16
(
1
), pp.
67
71
.10.1007/BF01047042
19.
Sun
,
J. P.
,
Li
,
X.
,
Ng
,
R. S.
,
Zhou
,
J. H.
, and
Song
,
B.
,
2009
, “
Economic Impact Assessment of Intelligent Prediction Monitoring System (IPMS) for Real-Time Tracking of Machining Processes
,” SIMTech Technical Reports (STR_V10_N4_11_STA), Vol. 10, No. 4.
20.
Byers
,
J. P.
,
2006
,
Metalworking Fluids
,
CRC Press
,
Boca Raton, FL
.
21.
ASTM Standard D2983-03
,
2004
,
Standard Test Method for Low-Temperature Viscosity of Lubricants Measured by Brookfield Viscometer
,
Book of Standards, 05.01
,
Petroleum Products and Lubricants, ASTM International
.
22.
Tschätsch
,
I. H.
, and
Reichelt
,
D. I. A.
,
2009
, “
Cutting Force Measurement in Machining
,”
Applied Machining Technology
,
Springer
,
Berlin
, pp.
353
359
.
23.
American National Standard
,
1985
, “
Tool Life Testing With Sigle Point Turning Tools
,”
ANSI/ASME B94.55M-1985
,
ASME
,
New York
.
24.
ISO Standards, ISO 25178-701
, “Geometrical Product Specifications (GPS)—Surface Texture: Areal Part 701: Calibration and Measurement Standards for Contact (Stylus) Instruments.”
25.
Kotaiah
,
B.
, and
Kumaraswamy
,
N.
,
1994
,
Environmental Engineering Laboratory Manual
,
Charotar Publishing House
,
Gujarat, India
.
26.
Srinivas
,
T.
,
2008
,
Environmental Biotechnology
,
New Age International
,
New Delhi, India
, p.
10
.
27.
Institute of Advanced Manufacturing Sciences, Incorporated Machining Xcellence Division
, “Pollution Prevention Guide to Using Metal Removal Fluids in Machining Operations,” p.
32
.
33.
Li
,
X.
,
Lim
,
B. S.
,
Zhou
,
J. H.
,
Huang
,
S.
,
Phua
,
S. J.
,
Shaw
,
K. C.
, and
Er
,
M. J.
,
2009
, “
Fuzzy Neural Network Modelling for Tool Wear Estimation in Dry Milling Operation
,”
Annual Conference of the Prognostics and Health Management Society
.
34.
Xuan-Truong
,
D.
, and
Minh-Duc
,
T.
,
2013
, “
Effect of Cutting Condition on Tool Wear and Surface Roughness During Machining of Inconel 718
,”
Int. J. Adv. Eng. Technol.
,
IV
, pp.
108
112
.
35.
Krishna
, V
. P.
,
Rao
,
D. N.
, and
Srikant
,
R. R.
,
2009
, “
Predictive Modelling of Surface Roughness and Tool Wear in Solid Lubricant Assisted Turning of AISI 1040 Steel
,”
Proc. Inst. Mech. Eng., Part J
,
223
(
6
), pp.
929
934
.10.1243/13506501JET475
36.
Luo
,
X.
,
Cheng
,
K.
,
Holt
,
R.
, and
Liu
,
X.
,
2005
, “
Modeling Flank Wear of Carbide Tool Insert in Metal Cutting
,”
Wear
,
259
(
7
), pp.
1235
1240
.10.1016/j.wear.2005.02.044
37.
Fujiki
,
M.
,
Ni
,
J.
, and
Shih
,
A. J.
,
2009
, “
Investigation of the Effects of Electrode Orientation and Fluid Flow Rate in Near-Dry EDM Milling
,”
Int. J. Mach. Tools Manuf.
,
49
(
10
), pp.
749
758
.10.1016/j.ijmachtools.2009.05.003
38.
Murthy
,
K. S.
, and
Rajendran
, I
. G.
,
2012
, “
Prediction and Analysis of Multiple Quality Characteristics in Drilling Under Minimum Quantity Lubrication
,”
Proc. Inst. Mech. Eng.
, Part B,
226
(
6
), pp.
1061
1070
.10.1177/0954405411435579
39.
Douglas
,
J. F.
,
Gasiorek
,
J. M.
, and
Swaffield
,
J. A.
,
Fluid Mechanics
,
5th ed.
,
Pearson Education, Ltd.
,
Noida, India
.
You do not currently have access to this content.