Drug delivery technologies are an important area within biomedicine. Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near a desired site within the body. This is particularly beneficial in, for instance, cancer chemotherapy, where the side effects of general (systemic) drug administration can be severe. Herein, a numerical investigation of unsteady magnetic drug targeting (MDT) using functionalized magnetic microspheres in partly occluded blood vessels is presented considering the effects of particle-fluid coupling on the transport and capture of the magnetic particles. An Eulerian–Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ansys fluent. An implantable cylindrical permanent magnet insert is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Parametric investigation is conducted and the influence of the flow Re, magnetic insert diameter, and its radial and axial position on the “targeting efficiency” is reported. Analysis shows that there exists an optimum regime of operating parameters for which deposition of the drug-carrying magnetic particles in a predesignated target zone on the partly occluded vessel wall can be maximized. The results provide useful design bases for in vitro set up for the investigation of MDT in stenosed blood vessels.

References

References
1.
Lübbe
,
A. S.
,
Bergeman
,
C.
,
Riess
,
H.
,
Schriever
,
F.
,
Reichardt
,
P.
,
Possinger
,
K.
,
Matthias
,
M.
,
Dörken
,
B.
,
Gürtler
,
R.
,
Hohenberger
,
P.
,
Haas
,
N.
,
Sohr
,
R.
,
Sander
,
B.
,
Lemke
,
A.
,
Ohlendorf
,
D.
,
Huhnt
,
W.
, and
Huhn
,
D.
,
1996
, “
Clinical Experiences With Magnetic Drug Targeting: A Phase I Study With 4′-Epidoxorubicin in 14 Patients With Advanced Solid Tumors
,”
Cancer Res.
,
56
, pp.
4686
4693
. Available at: http://cancerres.aacrjournals.org/content/57/14/3063.citation
2.
Lübbe
,
A. S.
,
Alexiou
,
C.
, and
Bergemann
,
C.
,
2001
, “
Clinical Applications of Magnetic Drug Targeting
,”
J. Surg. Res.
,
95
, pp.
200
206
.10.1006/jsre.2000.6030
3.
Häfeli
,
U. O.
,
Gilmour
,
K.
,
Zhou
,
A.
,
Lee
,
S.
, and
Hayden
,
M. E.
,
2007
, “
Modeling of Magnetic Bandages for Drug Targeting: Button vs. Halbach Arrays
,”
J. Magn. Magn. Mater.
,
311
, pp.
323
329
.10.1016/j.jmmm.2006.10.1152
4.
Torchilin
,
V. P.
,
2000
, “
Drug Targeting
,”
Eur. J. Pharm. Sci.
,
11
(
2
), pp.
S81
S91
.10.1016/S0928-0987(00)00166-4
5.
Dobson
,
J.
,
2006
, “
Magnetic Nanoparticles for Drug Delivery
,”
Drug Dev. Res.
,
67
, pp.
55
60
.10.1002/ddr.20067
6.
Dobson
,
J.
,
2006
, “
Magnetic Nanoparticle-Based Targeting for Drug and Gene Delivery
,”
Nanomedicine
,
1
, pp.
31
37
.10.2217/17435889.1.1.31
7.
Voltairas
,
P. A.
,
Fotiades
,
D. I.
, and
Michalis
,
L. K.
,
2002
, “
Hydrodynamics of Magnetic Drug Targeting
,”
J. Biomech.
,
35
, pp.
813
829
.10.1016/S0021-9290(02)00034-9
8.
Torchilin
,
V. P.
,
1995
, “
Targeting of Drugs and Drug Carriers Within the Cardiovascular System
,”
Adv. Drug Delivery Rev.
,
17
, pp.
75
101
.10.1016/0169-409X(95)00042-6
9.
Moulton
,
K. S.
,
Heller
,
E.
,
Konerding
,
M. A.
,
Flynn
,
E.
,
Palinski
,
W.
, and
Folkman
,
J.
,
1999
, “
Angiogenesis Inhibitors Endostatin or TNP-470 Reduce Intimal Neovascularization and Plaque Growth in Apolipoprotein E–Deficient Mice
,”
Circulation
,
99
, pp.
1726
1732
.10.1161/01.CIR.99.13.1726
10.
Herbst
,
R. S.
,
Madden
,
T. L.
,
Tran
,
H. T.
,
Blumenschein
,
G. R.
, Jr.
,
Meyers
,
C. A.
,
Seabrooke
,
L. F.
,
Khuri
,
F. R.
,
Puduvalli
,
V. K.
,
Allgood
,
V.
,
Fritsche
,
H. A.
, Jr.
,
Hinton
,
L.
,
Newman
,
R. A.
,
Crane
,
E. A.
,
Fossella
,
F. V.
,
Dordal
,
M.
,
Goodin
,
T.
, and
Hong
,
W. K.
,
2002
, “
Safety and Pharmacokinetic Effects of TNP-470, an Angiogenesis Inhibitor, Combined With Paclitaxel in Patients With Solid Tumors: Evidence for Activity in Non-Small-Cell Lung Cancer
,”
J. Clin. Oncol.
,
20
, pp.
4440
4447
.10.1200/JCO.2002.04.006
11.
Liu
,
S.
,
Widom
,
J.
,
Kemp
,
C. W.
,
Crews
,
C. M.
, and
Clardy
,
J.
,
1998
, “
Structure of Human Methionine Aminopeptidase-2 Complexed With Fumagillin
,”
Science
,
282
, pp.
1324
1327
.10.1126/science.282.5392.1324
12.
Lanza
,
G. M.
,
Yu
,
X.
,
Winter
,
P. M.
,
Abendschein
,
D. R.
,
Karukstis
,
K. K.
,
Scott
,
M. J.
,
Chinen
,
L. K.
,
Fuhrhop
,
R. W.
,
Scherrer
,
D. E.
, and
Wickline.
S. A.
,
2002
, “
A Novel Site-Targeted Ultrasonic Contrast Agent With Broad Biomedical Application
,”
Circulation
,
106
, pp.
2842
2867
.10.1161/01.CIR.0000044020.27990.32
13.
Sousa
,
J. E.
,
Costa
,
M. A.
,
Abizaid
,
A.
,
Abizaid
,
A. S.
,
Feres
,
F.
,
Pinto
,
I. M. F.
,
Seixas
,
A. C.
,
Staico
,
R.
,
Mattos
,
L. A.
,
Sousa
,
A. G. M. R.
,
Falotico
,
R.
,
Jaeger
,
J.
,
Popma
,
J. J.
, and
Serruys
,
P. W.
,
2001
, “
Lack of Neointimal Proliferation After Implantation of Sirolimus-Coated Stents in Human Coronary Arteries: A Quantitative Coronary Angiography and Three-Dimensional Intravascular Ultrasound Study
,”
Circulation
,
103
, pp.
192
204
.10.1161/01.CIR.103.2.192
14.
Chen
,
H.
,
Kaminski
,
M. D.
,
Pytel
,
P.
,
MacDonald
,
L.
, and
Rosengart
,
A. J.
,
2008
, “
Capture of Magnetic Carriers Within Large Arteries Using External Magnetic Fields
,”
J. Drug Targeting
,
16
, pp.
262
271
.10.1080/10611860801900892
15.
Alexiou
,
C.
,
Arnold
,
W.
,
Klein
,
R. J.
,
Parak
,
F. G.
,
Hulin
,
P.
,
Bergemann
,
C.
,
Erhardt
,
W.
,
Wagenpfeil
,
S.
, and
Lübbe
,
A. S.
,
2000
, “
Locoregional Cancer Treatment With Magnetic Drug Targeting
,”
Cancer Res.
,
60
, pp.
6641
6648
. Available at: http://cancerres.aacrjournals.org/content/60/23/6641.long
16.
Jordan
,
A.
,
Scholz
,
R.
,
Maier-Hauff
,
K.
,
Johannsen
,
M.
,
Wust
,
P.
,
Nadobny
,
J.
,
Schirra
,
H.
,
Schmidt
,
H.
,
Deger
,
S.
,
Loening
,
S.
,
Lanksch
,
W.
, and
Felix
,
R.
,
2001
, “
Presentation of a New Magnetic Field Therapy System for the Treatment of Human Solid Tumors With Magnetic Fluid Hyperthermia
,”
J. Magn. Magn. Mater.
,
225
(
1-2
), pp.
118
126
.10.1016/S0304-8853(00)01239-7
17.
Johannsen
,
M.
,
Gneveckow
,
U.
,
Eckelt
,
L.
,
Feussner
,
A.
,
WaldöFner
,
N.
,
Scholz
,
R.
,
Deger
,
S.
,
Wust
,
P.
,
Loening
,
S. A.
, and
Jordan
,
A.
,
2005
, “
Clinical Hyperthermia of Prostate Cancer Using Magnetic Nanoparticles: Presentation of a New Interstitial Technique
,”
Int. J. Hyperthermia
,
21
, pp.
637
652
.10.1080/02656730500158360
18.
Pankhurst
,
Q. A.
,
Connolly
,
J.
,
Jones
,
S. K.
, and
Dobson
,
J.
,
2003
, “
Applications of Magnetic Nanoparticles in Biomedicine
,”
J. Phys. D: Appl. Phys.
,
36
, pp.
R167
R181
.10.1088/0022-3727/36/13/201
19.
Avil
és
,
M. O.
,
Ebner
,
A. D.
, and
Ritter
,
J. A.
,
2008
, “
Implant Assisted-Magnetic Drug Targeting: Comparison of in vitro Experiments With Theory
,”
J. Magn. Magn. Mater.
,
320
, pp.
2704
2713
.10.1016/j.jmmm.2008.06.001
20.
Forbes
,
Z. G.
,
Yellen
,
B. B.
,
Halverson
,
D. S.
,
Fridman
,
G.
,
Barbee
,
K. A.
, and
Friedman
,
G.
,
2008
, “
Validation of High Gradient Magnetic Field Based Drug Delivery to Magnetizable Implants Under Flow
,”
IEEE Trans. Biomed. Eng.
,
55
, pp.
643
649
.10.1109/TBME.2007.899347
21.
Furlani
E. J.
, and
Furlani
,
E. P.
,
2007
, “
A Model for Predicting Magnetic Targeting of Multifunctional Particles in the Microvasculature
,”
J. Magn. Magn. Mater.
,
312
, pp.
187
201
.10.1016/j.jmmm.2006.09.026
22.
Yellen
,
B. B.
,
Forbes
,
Z. G.
,
Halverson
,
D. S.
,
Fridman
,
G.
,
Barbee
,
K. A.
,
Chorny
,
M.
,
Levy
,
R.
, and
Friedman
,
G.
,
2005
, “
Targeted Drug Delivery to Magnetic Implants for Therapeutic Applications
,”
J. Magn. Magn. Mater.
,
293
, pp.
647
662
.10.1016/j.jmmm.2005.01.083
23.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation
,”
Arteriosclerosis
,
5
, pp.
293
302
.10.1161/01.ATV.5.3.293
24.
Haverkort
,
J. W.
,
Kenjereš
,
S.
, and
Kleijn
,
C. R.
,
2009
, “
Computational Simulations of Magnetic Particle Capture in Arterial Flows
,”
Ann. Biomed. Eng.
,
37
, pp.
2436
2444
.10.1007/s10439-009-9786-y
25.
Neofytou
,
P.
, and
Tsangaris
,
S.
,
2004
, “
Computational Haemodynamics and the Effects of Blood Rheological Models on the Flow Through an Arterial Stenosis
,”
European Congress on Computational Methods in Applied Sciences and Engineering
.
26.
Banerjee
,
M. K.
,
Ganguly
,
R.
, and
Datta
,
A.
,
2010
, “
Magnetic Drug Targeting in Partly Occluded Blood Vessels Using Magnetic Microspheres
,”
ASME J. Nanotechnol. Eng. Med.
,
1
(
4
), p.
041005
.10.1115/1.4002418
27.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
) pp.
193
208
.10.1017/S0022112072001806
28.
Modak
,
N.
,
Datta
,
A.
, and
Ganguly
,
R.
,
2009
, “
Cell Separation in a Microfluidic Channel Using Magnetic Microspheres
,”
Microfluid. Nanofluid.
,
6
, pp.
647
660
.10.1007/s10404-008-0343-z
29.
Gerber
,
R.
,
Takayasu
,
M.
, and
Frieslander
,
FJ.
,
1983
, “
Generalization of HGMS Theory: the Capture of Ultrafine Particles
,”
IEEE Trans. Magn.
,
19
(
5
), pp.
2115
2117
.10.1109/TMAG.1983.1062795
30.
Merrill
,
E. W.
,
1965
, “
Rheology of Human Blood and Some Speculations on its Role in Vascular Homeostasis
,”
Biomechanical Mechanisms in Vascular Homeostasis and Intravascular Thrombosis
,
P. N.
Sawyer
, ed.,
Appleton-Century-Crofts
,
New York
, pp.
121
137
.
31.
Berger
S. A.
, and
Jou
L. D.
,
2000
, “
Flow in Stenotic Vessels
,”
Annu. Rev. Fluid Mech.
,
32
, pp.
347
382
.10.1146/annurev.fluid.32.1.347
32.
ansys® Academic CFD Research 14.5, Ansys, Inc.
33.
Banerjee
,
M. K.
,
Ganguly
,
R.
, and
Datta
,
A.
,
2012
, “
Effect of Pulsatile Flow Waveform and Womersley Number on the Flow in Stenosed Arterial Geometry
,”
ISRN Biomath.
,
2012
, pp.
1
17
.10.5402/2012/853056
34.
Sinha
,
A.
,
Ganguly
,
R.
, and
Puri
,
I. K.
,
2009
, “
Magnetic Separation From Superparamagnetic Particle Suspensions
,”
J. Magn. Magn. Mater.
,
321
, pp.
2251
2267
.10.1016/j.jmmm.2009.01.034
35.
Ganguly
,
R.
,
Gaind
,
A. P.
, and
Puri
,
I. K.
,
2005
, “
A Strategy for the Assembly of Three-Dimensional Mesoscopic Structures Using a Ferrofluid
,”
Phys. Fluids
,
17
, pp.
1
9
. Available at: http://www.researchgate.net/publication/228332503_A_strategy_for_the_assembly_of_3-D_mesoscopic_structures_using_a_ferrofluid
You do not currently have access to this content.