Biological systems use transporter proteins to create concentration gradients for a variety of purposes. In plant, sucrose transporter proteins play a vital role in driving fluid flow through the phloem by generating chemical potential. In this study, we investigate these nanoscale phenomena of protein directed active transport in a microscale biological system. We presented a mathematical model for protein facilitated sucrose loading considering six different states of the sucrose transporter protein. In addition, we developed a quasi-one dimensional transport model to study protein facilitated pumping mechanisms in plant phloem. Here we specifically study the influence of transporter protein reaction rates, apoplast proton concentration, membrane electrical potential, and cell membrane hydraulic permeability on flow through the phloem. This study reveals that increasing companion cell side deprotonation rate significantly enhances the sieve tube sugar concentrations, which results in much higher water transport. Lower apoplast pH increases the transport rate, but the flow control is less noticeable for a pH less than 5. A more negative membrane electrical potential difference will significantly accelerate the transporter proteins' ability to pump water and nutrients. Higher companion cell and sieve element membrane hydraulic permeability also promotes flows through the phloem; however, the flow difference is less noticeable at higher permeabilities when near typical plant cell membrane ranges.

References

References
1.
Lacointe
,
A.
, and
Minchin
,
P. E. H.
,
2008
, “
Modelling Phloem and Xylem Transport Within a Complex Architecture
,”
Funct. Plant Biol.
,
35
(
10
), pp.
772
780
.10.1071/FP08085
2.
Turgeon
,
R.
,
2010
, “
The Role of Phloem Loading Reconsidered
,”
Plant Physiol.
,
152
(
4
), pp.
1817
1823
.10.1104/pp.110.153023
3.
Sundaresan
,
V. B.
, and
Leo
,
D. J.
,
2010
, “
Chemoelectrical Energy Conversion of Adenosine Triphosphate Using ATPases
,”
J. Intell. Mater. Syst. Struct.
,
21
(
2
), pp.
201
212
.10.1177/1045389X09352817
4.
Sundaresan
,
V. B.
, and
Leo
,
D. J.
,
2008
, “
Modeling and Characterization of a Chemomechanical Actuator Using Protein Transporter
,”
Sens. Actuators B
,
131
(
2
), pp.
384
393
.10.1016/j.snb.2007.11.057
5.
Jensen
,
K. H.
,
Berg-Sørensen
,
K.
,
Friis
,
S. M. M.
, and
Bohr
,
T.
,
2012
, “
Analytic Solutions and Universal Properties of Sugar Loading Models in Münch Phloem Flow
,”
J. Theor. Biol.
,
304
, pp.
286
296
.10.1016/j.jtbi.2012.03.012
6.
De Schepper
,
V.
, and
Steppe
,
K.
,
2010
, “
Development and Verification of a Water and Sugar Transport Model Using Measured Stem Diameter Variations
,”
J. Exp. Bot.
,
61
(
8
), pp.
2083
2099
.10.1093/jxb/erq018
7.
Kong
,
Y.
, and
Ma
,
J.
,
2001
, “
Dynamic Mechanisms of the Membrane Water Channel Aquaporin-1 (AQP1)
,”
Proc. Natl. Acad. Sci. U.S.A.
,
98
(
25
), pp.
14345
14349
.10.1073/pnas.251507998
8.
Tang
,
C.
,
Huang
,
D.
,
Yang
,
J.
,
Liu
,
S.
,
Sakr
,
S.
,
Li
,
H.
,
Zhou
,
Y.
, and
Qin
,
Y.
,
2010
, “
The Sucrose Transporter HbSUT3 Plays an Active Role in Sucrose Loading to Laticifer and Rubber Productivity in Exploited Trees of Hevea brasiliensis (para rubber tree)
,”
Plant Cell Environ.
,
33
(
10
), pp.
1708
1720
.10.1111/j.1365-3040.2010.02175.x
9.
Wang
,
C. Y.
,
2010
, “
Stokes Flow Through a Barrier With Distributed Pores
,”
Chem. Eng. Commun.
,
197
(
11
), pp.
1428
1434
.10.1080/00986441003626185
10.
Kargol
,
M.
, and
Kargol
,
A.
,
2003
, “
Mechanistic Equations for Membrane Substance Transport and their Identity With Kedem-Katchalsky Equations
,”
Biophys. Chem.
,
103
(
2
), pp.
117
127
.10.1016/S0301-4622(02)00250-8
11.
Sze
,
T.-k. J.
,
Liu
,
J.
, and
Dutta
,
P.
,
2013
, “
Numerical Modeling of Flow through Phloem Considering Active Loading
,”
ASME J. Fluids Eng.
,
136
, p.
021206
.10.1115/1.4025869
12.
Chenlo
,
F.
,
Moreira
,
R.
,
Pereira
,
G.
, and
Ampudia
,
A.
,
2002
, “
Viscosities of Aqueous Solutions of Sucrose and Sodium Chloride of Interest in Osmotic Dehydration Processes
,”
J. Food Eng.
,
54
(
4
), pp.
347
352
.10.1016/S0260-8774(01)00221-7
13.
Ekdawi-Sever
,
N.
,
de Pablo
,
J. J.
,
Feick
,
E.
, and
von Meerwall
,
E.
,
2003
, “
Diffusion of Sucrose and Alpha,Alpha-Trehalose in Aqueous Solutions
,”
J. Phys. Chem. A
,
107
, pp.
936
943
.10.1021/jp020187b
14.
Chatterjee
,
A.
,
1964
, “
Measurement of the Diffusion Coefficients of Sucrose in Very Dilute Aqueous Solutions Using Jamin Interference Optics at 25 deg
,”
J. Am. Chem. Soc.
,
86
(
5
), pp.
793
795
.10.1021/ja01059a009
15.
Michel
,
B. E.
,
1972
, “
Solute Potentials of Sucrose Solutions
,”
Plant Physiol.
,
50
(
1
), pp.
196
198
.10.1104/pp.50.1.196
16.
Sweetlove
,
L. J.
,
Kossmann
,
J.
,
Riesmeier
,
J. W.
,
Trethewey
,
R. N.
, and
Hill
,
S. A.
,
1998
, “
The Control of Source to Sink Carbon Flux During Tuber Development in Potato
,”
Plant J.
,
15
(
5
), pp.
697
706
.10.1046/j.1365-313x.1998.00247.x
17.
Hafke
,
J. B.
,
van Amerongen
,
J. K.
,
Kelling
,
F.
,
Furch
,
A. C.
,
Gaupels
,
F.
, and
Van Bel
,
A. J. E.
,
2005
, “
Thermodynamic Battle for Photosynthate Acquisition Between Sieve Tubes and Adjoining Parenchyma in Transport Phloem
,”
Plant Physiol.
,
138
(
3
), pp.
1527
1537
.10.1104/pp.104.058511
18.
Boorer
,
K. J.
,
Loo
,
D. D.
,
Frommer
,
W. B.
, and
Wright
,
E. M.
,
1996
, “
Transport Mechanism of the Cloned Potato H+/Sucrose Cotransporter StSUT1
,”
J. Biol. Chem.
,
271
(
41
), pp.
25139
25144
.10.1074/jbc.271.41.25139
19.
Kempers
,
R.
,
Ammerlaan
,
A.
, and
Van Bel
,
A. J. E.
,
1998
, “
Symplasmic Constriction and Ultrastructural Features of the Sieve Element/Companion Cell Complex in the Transport Phloem of Apoplasmically and Symplasmically Phloem-Loading Species
,”
Plant Physiol.
,
116
(
1
), pp.
271
278
.10.1104/pp.116.1.271
20.
Windt
,
C. W.
,
Vergeldt
,
F. J.
,
De Jager
,
P. A.
, and
As Henk
,
V.
,
2006
, “
MRI of Long-Distance Water Transport: A Comparison of the Phloem and Xylem Flow Characteristics and Dynamics in Poplar, Castor Bean, Tomato and Tobacco
,”
Plant Cell Environ.
,
29
(
9
), pp.
1715
1729
.10.1111/j.1365-3040.2006.01544.x
21.
Sprague
,
I. B.
,
Byun
,
D.
, and
Dutta
,
P.
,
2010
, “
Effects of Reactant Crossover and Electrode Dimensions on the Performance of a Microfluidic Based Laminar Flow Fuel Cell
,”
Electrochim. Acta
,
55
(
28
), pp.
8579
8589
.10.1016/j.electacta.2010.07.035
22.
Sprague
,
I. B.
, and
Dutta
,
P.
,
2011
, “
Modeling of Diffuse Charge Effects in a Microfluidic Based Laminar Flow Fuel Cell
,”
Numer. Heat Transfer Part A
,
59
(
1
), pp.
1
27
.10.1080/10407782.2010.523299
23.
Sprague
,
I.
, and
Dutta
,
P.
,
2011
, “
Role of the Diffuse Layer in Acidic and Alkaline Fuel Cells
,”
Electrochim. Acta
,
56
(
12
), pp.
4518
4525
.10.1016/j.electacta.2011.02.060
24.
Thompson
,
M. V.
, and
Holbrook
,
N. M.
,
2003
, “
Application of a Single-Solute Non-Steady-State Phloem Model to the Study of Long-Distance Assimilate Transport
,”
J. Theor. Biol.
,
220
(
4
), pp.
419
455
.10.1006/jtbi.2003.3115
25.
Aharoni
,
N.
, and
Lieberman
,
M.
,
1979
, “
Patterns of Ethylene Production in Senescing Leaves
,”
Plant Physiol.
,
64
(
5
), pp.
796
800
.10.1104/pp.64.5.796
26.
Begg
,
J. E.
, and
Turner
,
N. C.
,
1970
, “
Water Potential Gradients in Field Tobacco
,”
Plant Physiol.
,
46
(
2
), pp.
343
346
.10.1104/pp.46.2.343
27.
Mullendore
,
D. L.
,
Windt
,
C. W.
,
Van As
,
H.
, and
Knoblauch
,
M.
,
2010
, “
Sieve Tube Geometry in Relation to Phloem Flow
,”
Plant Cell
,
22
(
3
), pp.
579
593
.10.1105/tpc.109.070094
28.
Martre
,
P.
,
Morillon
,
R.
,
Barrieu
,
F.
,
North
,
G. B.
,
Nobel
,
P. S.
, and
Chrispeels
,
M. J.
,
2002
, “
Plasma Membrane Aquaporins Play a Significant Role During Recovery From Water Deficit
,”
Plant Physiol.
,
130
(
4
), pp.
2101
2110
.10.1104/pp.009019
You do not currently have access to this content.