Chitosan nanoparticles have a biodegradable, biocompatible, nontoxic structure, and are commonly used for drug delivery systems. In this study, design, modeling, and fabrication methodology of a microfluidic device for the synthesis of chitosan nanoparticles is presented. In the modeling, 2D flow and concentration field is computed using COMSOL Multiphysics® simulation environment to predict the performance of the device. The microfluidic chip is fabricated out of PDMS. The fabrication of the mold for the microfluidic device is performed using high-precision micromachining. Some preliminary proof-of-concept experiments were performed. It was observed that compared to conventional batch-type methods, the proposed microfluidic device can perform the synthesis much faster and in a much automated and convenient manner.

References

References
1.
Lee
,
K. H.
,
Shin
,
S. J.
,
Kim
,
C.-B.
,
Kim
,
J. K.
,
Cho
,
Y. W.
,
Chung
,
B. G.
, and
Lee
,
S.-H.
,
2010
, “
Microfluidic Synthesis of Pure Chitosan Microfibers for Bio-Artificial Liver Chip
,”
Lab Chip
,
10
, pp.
1328
1334
.10.1039/b924987g
2.
Muzzarelli
,
R. A. A.
,
2011
, “
Biomedical Exploitation of Chitin and Chitosan Via Mechano-Chemical Disassembly, Electrospinning, Dissolution in Imidazolium Ionic Liquids, and Supercritical Drying
,”
Mar. Drugs
,
9
, pp.
1510
1533
.10.3390/md9091510
3.
Mahapatro
,
A.
, and
Singh
,
D. K.
,
2011
, “
Biodegradable Nanoparticles are Excellent Vehicle for Site Directed In-Vivo Delivery of Drugs and Vaccines
,”
J. Nanobiotechnol.
,
9
(
55
), pp.
1
11
.10.1186/1477-3155-9-55
4.
Dai
,
T.
,
Tanaka
,
M.
,
Huang
,
Y.-Y.
, and
Hamblin
,
M. R.
,
2011
, “
Chitosan Preparations for Wounds and Burns: Antimicrobial and Wound-Healing Effects
,”
Expert Rev. Anti–Infect. Ther.
,
9
(
7
), pp.
857
879
.10.1586/eri.11.59
5.
Venkatesan
,
J.
, and
Kim
,
S.-K.
,
2010
, “
Chitosan Composites for Bone Tissue Engineering—An Overview
,”
Mar. Drugs
,
8
, pp.
2252
2266
.10.3390/md8082252
6.
Grenha
,
A
.,
2012
, “
Chitosan Nanoparticles: A Survey of Preparation Methods
,”
J. Drug Targeting
,
20
(
4
), pp.
291
300
.10.3109/1061186X.2011.654121
7.
Majedi
,
F. S.
,
Hasani-Sadrabadi
,
M. M.
,
Emami
,
S. H.
,
Taghipoor
,
M.
,
Dashtimoghadam
,
E.
,
Bertsch
,
A.
,
Moaddel
,
H.
, and
Renaud
,
P.
,
2012
, “
Microfluidic Synthesis of Chitosan-Based Nanoparticles for Fuel Cell Applications
,”
Chem. Commun.
,
48
, pp.
7744
7746
.10.1039/c2cc33253a
8.
Majedi
,
F. S.
,
Hasani-Sadrabadi
,
M. M.
,
Hojjati Emami
,
S.
,
Shokrgozar
,
M. A.
,
VanDersarl
,
J. J.
,
Dashtimoghadam
,
E.
,
Bertsch
,
A.
, and
Renaud
,
P.
,
2013
, “
Microfluidic Assisted Self-Assembly of Chitosan Based Nanoparticles as Drug Delivery Agents
,”
Lab Chip
,
13
, pp.
204
207
.10.1039/c2lc41045a
9.
Yang
,
C.-H.
,
Lin
,
Y.-S.
,
Huang
,
K.-S.
,
Huang
,
Y.-C.
,
Wang
,
E.-C.
,
Jhong
,
J.-Y.
, and
Kuo
,
C.-Y.
,
2009
, “
Microfluidic Emulsification and Sorting Assisted Preparation of Monodisperse Chitosan Microparticles
,”
Lab Chip
,
9
, pp.
145
150
.10.1039/b807454b
10.
Karnik
,
R.
,
Gu
,
F.
,
Basto
,
P.
,
Cannizzaro
,
C.
,
Dean
,
L.
,
Kyei-Manu
,
W.
,
Langer
,
R.
, and
Farokhzad
,
O. C.
,
2008
, “
Microfluidic Platform for Controlled Synthesis of Polymeric Nanoparticles
,”
Nano Lett.
,
8
(
9
), pp.
2906
2912
.10.1021/nl801736q
11.
Suh
,
Y. K.
, and
Kang
,
S.
,
2010
, “
A Review on Mixing in Microfluidics
,”
Micromachines
,
1
(
3
), pp.
82
111
.10.3390/mi1030082
12.
Mengeaud
,
V.
,
Josserand
,
J.
, and
Girault
,
H. H.
,
2002
, “
Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study
,”
Anal. Chem.
,
74
(
16
), pp.
4279
4286
.10.1021/ac025642e
13.
Liu
,
Y.
,
Kim
,
B.
, and
Sung
,
H.
,
2004
, “
Two-Fluid Mixing in a Microchannel
,”
Int. J. Heat Fluid Flow
,
25
, pp.
986
995
.10.1016/j.ijheatfluidflow.2004.03.006
14.
Lin
,
Y.-S.
,
Yang
,
C.-H.
,
Wang
,
C.-Y.
,
Chang
,
F.-R.
,
Huang
,
K.-S.
, and
Hsieh
,
W.-C.
,
2012
, “
An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(DL-Lactide-Co-Glycolide) Microparticle Generation
,”
Sensors
,
12
, pp.
1455
1467
.10.3390/s120201455
15.
Nguyen
,
N.-T.
, and
Wereley
,
S. T.
,
2006
,
Fundamentals and Applications of Microfluidics
,
Artech House
, Norwood, MA,
pp.
49
50
, 67–135.
16.
Becker
,
H.
, and
Locascio
,
L. E.
,
2002
, “
Polymer Microfluidic Devices
,”
Talanta
,
56
, pp.
267
287
.10.1016/S0039-9140(01)00594-X
17.
Bhagat
,
A. A. S.
, and
Papautsky
,
I.
,
2008
, “
Enhancing Particle Dispersion in a Passive Planar Micromixer Using Rectangular Obstacles
,”
J. Micromech. Microeng.
,
18
, pp.
1
9
.10.1088/0960-1317/18/8/085005
18.
Cetin
,
B.
,
Taze
,
S.
,
Asik
,
M. D.
, and
Tuncel
,
S. A.
,
2013
, “
Microfluidic Device for Synthesis of Chitosan Nanoparticles
,”
ASME 2013 Fluid Engineering Division Summer Meeting
, Incline Village, NV, July 7-11,
ASME
Paper No. FEDSM2013-16349.10.1115/FEDSM2013-16349
19.
Sun
,
T.
,
Ly
,
D.
, and
Teja
,
A. S.
,
1995
, “
Densities of Acetic Acid + Water Mixtures at High Temperatures and Concentrations
,”
Ind. Eng. Chem. Res.
,
34
, pp.
1327
1331
.10.1021/ie00043a038
20.
Qiao
,
Y.
,
Di
,
Z. G.
,
Ma
,
Y. G.
,
Ma
,
P. S.
, and
Xia
,
S. Q.
,
2010
, “
Viscosities of Pure Water, Acetic Acid + Water, and p-Xylene + Acetic Acid + Water at Different Temperature and Pressure
,”
Chin. J. Chem. Eng.
,
18
(
3
), pp.
446
454
.10.1016/S1004-9541(10)60242-X
21.
Chen
,
C.-K.
, and
Cho
,
C.-C.
,
2008
, “
A Combined Active/Passive Scheme for Enhancing the Mixing Efficiency of Microfluidic Devices
,”
Chem. Eng. Sci.
,
63
, pp.
3081
3087
.10.1016/j.ces.2008.03.007
You do not currently have access to this content.