In this work, results from atomistic molecular dynamics studies investigating the effect of surfactant concentration on the transport properties of bulk surfactant aqueous solutions, focusing on the anionic surfactant sodium dodecyl sulfate (SDS), are reported. The surfactant self-diffusion and the thermal conductivity of bulk aqueous SDS solutions were computed at a range of concentrations at room and boiling temperatures. Additionally, MP2f (Akin-Ojo et al., 2008, “Developing Ab Initio Quality Force Fields From Condensed Phase Quantum-Mechanics/Molecular-Mechanics Calculations Through the Adaptive Force Matching Method,” J. Phys. Chem., 129, p. 064108), one of a new generation water potentials is assessed for its suitability in reproducing the transport and thermal properties of bulk water. The thermal conductivity of MP2f water model was found to be: 0.64 W/(m⋅K) at 298 K and 0.66 W/(m⋅K) at 373 K, in much better agreement with the experimental values compared to both the rigid and the flexible TIP3P water model.

References

References
1.
Lowery
,
A. J.
, and
Westwater
,
J. W.
,
1957
, “
Heat Transfer to Boiling Methanol Effect of Added Agents
,”
Ind. Eng. Chem. Res.
,
49
(
9
), pp.
1445
1448
.10.1021/ie50573a052
2.
Jontz
,
P.
, and
Myers
,
J.
,
1960
, “
The Effect of Dynamic Surface Tension on Nucleate Boiling Coefficients
,”
AIChE J.
,
6
(
1
), pp.
34
38
.10.1002/aic.690060107
3.
Frost
,
W.
, and
Kippenhan
,
C. J.
,
1967
, “
Bubble Growth and Heat-Transfer Mechanisms in the Forced Convection Boiling of Water Containing a Surface Active Agent
,”
Int. J. Heat Mass Transfer
,
10
(
7
), pp.
931
949
.10.1016/0017-9310(67)90070-1
4.
Cheng
,
L.
,
Mewes
,
D.
, and
Luke
,
A.
,
2007
, “
Boiling Phenomena With Surfactants and Polymeric Additives: A State-of-the-Art Review
,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2744
2771
.10.1016/j.ijheatmasstransfer.2006.11.016
5.
Jyh-Fuh
,
C.
,
Ming-Huei
,
L.
, and
Yu-Min
,
Y.
,
1993
, “
Critical Heat Flux in Pool Boiling of Binary Mixtures as Determined by the Quenching Method
,”
Int. J. Heat Mass Transfer
,
36
(
16
), pp.
4071
4076
.10.1016/0017-9310(93)90157-2
6.
Manglik
,
R.
,
Wasekar
,
V.
, and
Zhang
,
J.
,
2001
, “
Dynamic and Equilibrium Surface Tension of Aqueous Surfactant and Polymeric Solutions
,”
Exp. Therm. Fluid Sci.
,
25
(
1–2
), pp.
55
64
.10.1016/S0894-1777(01)00060-7
7.
Wasekar
,
V.
, and
Manglik
,
R.
,
2002
, “
The Influence of Additive Molecular Weight and Ionic Nature on the Pool Boiling Performance of Aqueous Surfactant Solutions
,”
Int. J. Heat Mass Transfer
,
45
(
3
), pp.
483
493
.10.1016/S0017-9310(01)00174-0
8.
Hetsroni
,
G.
,
Gurevich
,
M.
,
Mosyak
,
A.
,
Rozenblit
,
R.
, and
Segal
,
Z.
,
2004
, “
Boiling Enhancement With Environmentally Acceptable Surfactants
,”
Int. J. Heat Fluid Flow
,
25
(
5
), pp.
841
848
. Selected papers from the 4th International Symposium on Turbulence Heat and Mass Transfer.10.1016/j.ijheatfluidflow.2004.05.005
9.
Zhang
,
J.
, and
Manglik
,
R.
,
2005
, “
Additive Adsorption and Interfacial Characteristics of Nucleate Pool Boiling in Aqueous Surfactant Solutions
,”
ASME J. Heat Transfer
,
127
(
7
), pp.
684
691
.10.1115/1.1924626
10.
Wasekar
,
V.
,
2009
, “
Heat Transfer in Nucleate Pool Boiling of Aqueous SDS and Triton X-100 Solutions
,”
Heat Mass Transfer
,
45
(
11
), pp.
1409
1414
.10.1007/s00231-009-0517-6
11.
Cheng
,
W.
,
Xie
,
B.
,
Han
,
F.
, and
Chen
,
H.
,
2013
, “
An Experimental Investigation of Heat Transfer Enhancement by Addition of High-Alcohol Surfactant (HAS) and Dissolving Salt Additive (DSA) in Spray Cooling
,”
Exp. Therm. Fluid Sci.
,
45
, pp.
198
202
.10.1016/j.expthermflusci.2012.11.005
12.
Wu
,
W.-T.
,
Lin
,
H.-S.
,
Yang
,
Y.-M.
, and
Maa
,
J.-R.
,
1994
, “
Critical Heat Flux in Pool Boiling of Aqueous Surfactant Solutions as Determined by the Quenching Method
,”
Int. J. Heat Mass Transfer
,
37
(
15
), pp.
2377
2379
.10.1016/0017-9310(94)90377-8
13.
Wu
,
W.-T.
,
Yang
,
Y.-M.
, and
Maa
,
J.-R.
,
1998
, “
Nucleate Pool Boiling Enhancement by Means of Surfactant Additives
,”
Exp. Therm. Fluid Sci.
,
18
(
3
), pp.
195
209
.10.1016/S0894-1777(98)10034-1
14.
Wu
,
W.-T.
,
Yang
,
Y.-M.
, and
Maa
,
J.-R.
,
1999
, “
Technical Note Pool Boiling Incipience and Vapor Bubble Growth Dynamics in Surfactant Solutions
,”
Int. J. Heat Mass Transfer
,
42
(
13
), pp.
2483
2488
.10.1016/S0017-9310(98)00335-4
15.
Peng
,
H.
,
Ding
,
G.
, and
Hu
,
H.
,
2011
, “
Effect of Surfactant Additives on Nucleate Pool Boiling Heat Transfer of Refrigerant-Based Nanofluid
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
960
970
.10.1016/j.expthermflusci.2011.01.016
16.
Xuan
,
Y.
,
Li
,
Q.
, and
Tie
,
P.
,
2013
, “
The Effect of Surfactants on Heat Transfer Feature of Nanofluids
,”
Exp. Therm. Fluid Sci.
,
46
, pp.
259
262
.10.1016/j.expthermflusci.2012.12.004
17.
Morgan
,
A. I.
,
Bromley
,
L. A.
, and
Wilke
,
C. R.
,
1949
, “
Effect of Surface Tension on Heat Transfer in Boiling
,”
Ind. Eng. Chem.
,
41
(
12
), pp.
2767
2769
.10.1021/ie50480a025
18.
Madejski
,
J.
,
1965
, “
Theory of Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
8
(
1
), pp.
155
171
.10.1016/0017-9310(65)90105-5
19.
Tzan
,
Y.
, and
Yang
,
Y.
,
1990
, “
Experimental Study of Surfactant Effects on Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
112
, pp.
207
212
.10.1115/1.2910346
20.
Wen
,
D.
,
Lin
,
G.
,
Vafaei
,
S.
, and
Zhang
,
K.
,
2009
, “
Review of Nanofluids for Heat Transfer Applications
,”
Particuology
,
7
(
2
), pp.
141
150
.10.1016/j.partic.2009.01.007
21.
Inoue
,
T.
, and
Monde
,
M.
,
2012
, “
Enhancement of Nucleate Pool Boiling Heat Transfer in Ammonia/Water Mixtures With a Surface-Active Agent
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3395
3399
.10.1016/j.ijheatmasstransfer.2012.03.004
22.
Fainerman
,
V.
, and
Miller
,
R.
,
1995
, “
Dynamic Surface Tensions of Surfactant Mixtures at the Water-Air Interface
,”
Colloids Surf., A
,
97
(
1
), pp.
65
82
.10.1016/0927-7757(94)03069-C
23.
Wen
,
D.
, and
Wang
,
B.
,
2002
, “
Effects of Surface Wettability on Nucleate Pool Boiling Heat Transfer for Surfactant Solutions
,”
Int. J. Heat Mass Transfer
,
45
(
8
), pp.
1739
1747
.10.1016/S0017-9310(01)00251-4
24.
Hetsroni
,
G.
,
Zakin
,
J.
,
Gurevich
,
M.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Rozenblit
,
R.
,
2004
, “
Saturated Flow Boiling Heat Transfer of Environmentally Acceptable Surfactants
,”
Int. J. Multiphase Flow
,
30
(
7–8
), pp.
717
734
.10.1016/j.ijmultiphaseflow.2004.05.001
25.
Hetsroni
,
G.
,
Gurevich
,
M.
,
Mosyak
,
A.
, and
Rozenblit
,
R.
,
2007
, “
Effect of Surfactant Concentration on Saturated Flow Boiling in Vertical Narrow Annular Channels
,”
Int. J. Multiphase Flow
,
33
(
11
), pp.
1141
1152
.10.1016/j.ijmultiphaseflow.2007.07.001
26.
Chandrasekar
,
M.
,
Suresh
,
S.
, and
Senthilkumar
,
T.
,
2012
, “
Mechanisms Proposed Through Experimental Investigations on Thermophysical Properties and Forced Convective Heat Transfer Characteristics of Various Nanofluids. A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
3917
3938
.10.1016/j.rser.2012.03.013
27.
Mingzheng
,
Z.
,
Guodong
,
X.
,
Jian
,
L.
,
Lei
,
C.
, and
Lijun
,
Z.
,
2012
, “
Analysis of Factors Influencing Thermal Conductivity and Viscosity in Different Kinds of Surfactant Solutions
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
22
29
.10.1016/j.expthermflusci.2011.07.014
28.
Yoon
,
H. Y.
,
Koshizuka
,
S.
, and
Oka
,
Y.
,
2001
, “
Direct Calculation of Bubble Growth, Departure, and Rise in Nucleate Pool Boiling
,”
Int. J. Multiphase Flow
,
27
(
2
), pp.
277
298
.10.1016/S0301-9322(00)00023-9
29.
Sher
,
I.
, and
Hetsroni
,
G.
,
2002
, “
An Analytical Model for Nucleate Pool Boiling With Surfactant Additives
,”
Int. J. Multiphase Flow
,
28
(
4
), pp.
699
706
.10.1016/S0301-9322(01)00087-8
30.
Li
,
Y.-Y.
,
Liu
,
Z.-H.
, and
Wang
,
G.-S.
,
2013
, “
A Predictive Model of Nucleate Pool Boiling on Heated Hydrophilic Surfaces
,”
Int. J. Heat Mass Transfer
,
65
, pp.
789
797
.10.1016/j.ijheatmasstransfer.2013.06.024
31.
Allen
,
M.
, and
Tildesley
,
D.
,
1987
,
Computer Simulations of Liquids
,
Oxford Science
,
Oxford, UK
.
32.
Jorgensen
,
W.
,
Chandrasekhar
,
J.
,
Madura
,
J.
,
Impey
,
R.
, and
Klein
,
M.
,
1983
, “
Comparison of Simple Potential Functions for Simulating Liquid Water
,”
Chem. Phys.
,
79
, pp.
926
935
.
33.
Liu
,
Y.-P.
,
Kim
,
K.
,
Berne
,
B.
,
Friesner
,
R.
, and
Rick
,
S.
,
1998
, “
Constructing Ab Initio Force Fields for Molecular Dynamics Simulations
,”
J. Chem. Phys.
,
108
, pp.
4739
4755
.10.1063/1.475886
34.
Guillot
,
J.
,
2002
, “
A Reappraisal of What We Have Learnt During Three Decades of Computer Simulations of Water
,”
J. Mol. Liq.
,
101
, pp.
219
260
.10.1016/S0167-7322(02)00094-6
35.
Burnhan
,
C.
, and
Xantheas
,
S.
,
2002
, “
Development of Transferable Interaction Models for Water. IV. A Flexible, All-Atom Polarizable Potential (TTM2-F) Based on Geometry Dependent Charges Derived From an Ab Initio Monomer Dipole Moment Surface
,”
J. Chem. Phys.
,
116
, pp.
5115
5124
.10.1063/1.1447904
36.
Anderson
,
B.
,
Tester
,
J.
, and
Trout
,
B.
,
2004
, “
Accurate Potentials for Argon—Water and Methane—Water Interactions Via Ab Initio Methods and Their Application to Clathrate Hydrates
,”
J. Phys. Chem. B
,
108
, pp.
18705
18715
.10.1021/jp047448x
37.
Vega
,
C.
, and
de Miguel
,
E.
,
2007
, “
Surface Tension of the Most Popular Models of Water by Using the Test-Area Simulation Method
,”
J. Chem. Phys.
,
126
, p.
154707
.10.1063/1.2715577
38.
Akin-Ojo
,
O.
,
Song
,
Y.
, and
Wang
,
F.
,
2008
, “
Developing Ab Initio Quality Force Fields From Condensed Phase Quantum-Mechanics/Molecular-Mechanics Calculations Through the Adaptive Force Matching Method
,”
J. Chem. Phys.
,
129
, p.
064108
.10.1063/1.2965882
39.
Ryckaert
,
J.-P.
,
Ciccotti
,
G.
, and
Berendsen
,
H.
,
1977
, “
Numerical Integration of the Cartesian Equation of Motion of a System With Constraints: Molecular Dynamics of n-Alkanes
,”
J. Comput. Phys.
,
23
, pp.
327
341
.10.1016/0021-9991(77)90098-5
40.
Tironi
,
I. G.
,
Brunne
,
R. M.
, and
van Gunsteren
,
W. F.
,
1996
, “
On the Relative Merits of Flexible Versus Rigid Models for Use in Computer Simulations of Molecular Liquids
,”
Chem. Phys. Lett.
,
250
(
1
), pp.
19
24
.10.1016/0009-2614(95)01434-9
41.
Wu
,
Y.
,
Tepper
,
H.
, and
Voth
,
G.
,
2006
, “
Flexible Simple Point-Charge Water Model With Improved Liquid-State Properties
,”
J. Chem. Phys.
,
124
, p.
024503
.10.1063/1.2136877
42.
Cornell
,
W. D.
,
Cieplak
,
P.
,
Bayly
,
C. I.
,
Gould
,
I. R.
,
Merz
,
K. M.
,
Ferguson
,
D. M.
,
Spellmeyer
,
D. C.
,
Fox
,
T.
,
Caldwell
,
J. W.
, and
Kollman
,
P. A.
,
1995
, “
A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules
,”
J. Am. Chem. Soc.
,
117
(
19
), pp.
5179
5197
.10.1021/ja00124a002
43.
MacKerell
,
A. D.
,
Bashford
,
D.
,
Bellott
,
Dunbrack
,
R. L.
,
Evanseck
,
J. D.
,
Field
,
M. J.
,
Fischer
,
S.
,
Gao
,
J.
,
Guo
,
H.
,
Ha
,
S.
,
Joseph-McCarthy
,
D.
,
Kuchnir
,
L.
,
Kuczera
,
K.
,
Lau
,
F. T. K.
,
Mattos
,
C.
,
Michnick
,
S.
,
Ngo
,
T.
,
Nguyen
,
D. T.
,
Prodhom
,
B.
,
Reiher
,
W. E.
,
Roux
,
B.
,
Schlenkrich
,
M.
,
Smith
,
J. C.
,
Stote
,
R.
,
Straub
,
J.
,
Watanabe
,
M.
,
Wirkiewicz-Kuczera
,
J.
,
Yin
,
D.
, and
Karplus
,
M.
,
1998
, “
All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins
,”
J. Phys. Chem. B
,
102
(
18
), pp.
3586
3616
.10.1021/jp973084f
44.
Jorgensen
,
W. L.
,
Maxwell
,
D. S.
, and
Tirado-Rives
,
J.
,
1996
, “
Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
,”
J. Am. Chem. Soc.
,
118
(
45
), pp.
11225
11236
.10.1021/ja9621760
45.
Cygan
,
R. T.
,
Liang
,
J.-J.
, and
Kalinichev
,
A. G.
,
2004
, “
Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field
,”
J. Phys. Chem. B
,
108
(
4
), pp.
1255
1266
.10.1021/jp0363287
46.
Mao
,
Y.
, and
Zhang
,
Y.
,
2012
, “
Thermal Conductivity, Shear Viscosity and Specific Heat of Rigid Water Models
,”
Chem. Phys. Lett.
,
542
, pp.
37
41
.10.1016/j.cplett.2012.05.044
47.
van der Spoel
,
D.
,
van Maaren
,
P.
, and
Berendsen
,
H.
,
1998
, “
A Systematic Study of Water Models for Molecular Simulations: Derivation of Water Models Optimized for Use With a Reaction Field
,”
J. Chem. Phys.
,
108
, pp.
10220
10230
.10.1063/1.476482
48.
Mark
,
P.
, and
Nilsson
,
L.
,
2001
, “
Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K
,”
J. Phys. Chem. A
,
105
, pp.
9954
9960
.10.1021/jp003020w
49.
Price
,
D.
, and
Brooks
, III,
C.
,
2004
, “
A Modified TIP3P Water Potential for Simulation With Ewald Summation
,”
J. Chem. Phys.
,
121
, pp.
10096
10103
.10.1063/1.1808117
50.
Sirk
,
T. W.
,
Moore
,
S.
, and
Brown
,
E. F.
,
2013
, “
Characteristics of Thermal Conductivity in Classical Water Models
,”
J. Chem. Phys.
,
138
(
6
), p.
064505
.10.1063/1.4789961
51.
Schweighofer
,
K.
,
Essmann
,
U.
, and
Berkowitz
,
M.
,
1997
, “
Simulation of Sodium Dodecyl Sulfate at the Water-Vapor and Water-Carbon Tetrachloride Interfaces at Low Surface Coverage
,”
J. Phys. Chem. B
,
101
, pp.
3793
3799
.10.1021/jp963460g
52.
Ercolessi
,
F.
, and
Adams
,
J. B.
,
1994
, “
Interatomic Potentials From First-Principles Calculations: The Force-Matching Method
,”
Europhys. Lett.
,
26
(
8
), pp.
583
588
.10.1209/0295-5075/26/8/005
53.
Csanyi
,
G.
,
Albaret
,
T.
,
Payne
,
M.
, and
De Vita
,
A.
,
2004
, “
“Learn on the Fly”: A Hybrid Classical and Quantum-Mechanical Molecular Dynamics Simulation
,”
Phys. Rev. Lett.
,
93
(
17
), p. 175503.10.1103/PhysRevLett.93.175503
54.
Dominguez
,
H.
, and
Berkowitz
,
M. L.
,
2000
, “
Computer Simulations of Sodium Dodecyl Sulfate at Liquid/Liquid and Liquid/Vapor Interfaces
,”
J. Phys. Chem. B
,
104
(
22
), pp.
5302
5308
.10.1021/jp994479x
55.
Bruce
,
C. D.
,
Berkowitz
,
M. L.
,
Perera
,
L.
, and
Forbes
,
M. D. E.
,
2002
, “
Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water: Micellar Structural Characteristics and Counterion Distribution
,”
J. Phys. Chem. B
,
106
(
15
), pp.
3788
3793
.10.1021/jp013616z
56.
Bruce
,
C. D.
,
Senapati
,
S.
,
Berkowitz
,
M. L.
,
Perera
,
L.
, and
Forbes
,
M. D. E.
,
2002
, “
Molecular Dynamics Simulations of Sodium Dodecyl Sulfate Micelle in Water: The Behavior of Water
,”
J. Phys. Chem. B
,
106
(
42
), pp.
10902
10907
.10.1021/jp025872x
57.
Cheng
,
T.
,
Chen
,
Q.
,
Li
,
F.
, and
Sun
,
H.
,
2010
, “
Classic Force Fields for Predicting Surface Tension and Interfacial Properties of Sodium Dodecyl Sulfate
,”
J. Phys. Chem. B
,
114
, pp.
13736
13744
.10.1021/jp107002x
58.
Martínez
,
L.
,
Andrade
,
R.
,
Birgin
,
E.
, and
Martínez
,
J.
,
2009
, “
Packmol: A Package for Building Initial Configurations for Molecular Dynamics Simulations
,”
J. Comput. Chem.
,
30
, pp.
2157
2164
.10.1002/jcc.21224
59.
Hockney
,
R. W.
, and
Eastwood
,
J. W.
,
1988
,
Computer Simulation Using Particles
,
Taylor and Francis
,
New York
.
60.
Plimpton
,
S.
,
1995
, “
First Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
, pp.
1
19
.10.1006/jcph.1995.1039
61.
York
,
D. M.
,
Darden
,
T. A.
, and
Pedersen
,
L. G.
,
1993
, “
The Effect of Long-Range Electrostatic Interactions in Simulations of Macromolecular Crystals: A Comparison of the Ewald and Truncated List Methods
,”
J. Chem. Phys.
,
99
(
10
), pp.
8345
8348
.10.1063/1.465608
62.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
,
1996
, “
VMD—Visual Molecular Dynamics
,”
J. Mol. Graphics
,
14
, pp.
33
38
.10.1016/0263-7855(96)00018-5
63.
Ashurst
,
W. T.
, and
Hoover
,
W. G.
,
1975
, “
Dense-Fluid Shear Viscosity Via Nonequilibrium Molecular Dynamics
,”
Phys. Rev. A
,
11
, pp.
658
678
.10.1103/PhysRevA.11.658
64.
Müller-Plathe
,
F.
,
1997
, “
A Simple Non-Equilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity
,”
J. Chem. Phys.
,
106
, pp.
6082
6085
.10.1063/1.473271
65.
Zhang
,
M.
,
Lussetti
,
E.
,
de Souza
,
L.
, and
Müller-Plathe
,
F.
,
2005
, “
Thermal Conductivities of Molecular Liquids by Reverse Nonequilibrium Molecular Dynamics
,”
J. Phys. Chem. B
,
109
(
31
), pp.
15060
15067
.10.1021/jp0512255
66.
Weinheimer
,
R.
,
Evans
,
D.
, and
Cussler
,
E.
,
1981
, “
Diffusion in Surfactant Solutions
,”
J. Colloid Interface Sci.
,
80
, pp.
357
368
.10.1016/0021-9797(81)90194-6
67.
Izvekov
,
S.
,
Parrinello
,
M.
,
Burnham
,
C.
, and
Voth
,
G.
,
2004
, “
Effective Force Fields for Condensed Phase Systems From Ab Initio Molecular Dynamics Simulation: A New Method for Force-Matching
,”
J. Chem. Phys.
,
120
(
23
), pp.
10896
10913
.10.1063/1.1739396
68.
Dünweg
,
B.
, and
Kremer
,
K.
,
1993
, “
Molecular Dynamics Simulation of a Polymer Chain in Solution
,”
J. Chem. Phys.
,
99
(
9
), pp.
6983
6997
.10.1063/1.465445
69.
Yeh
,
I.
, and
Hummer
,
G.
,
2004
, “
System-Size Dependence of Diffusion Coefficients and Viscosities From Molecular Dynamics Simulations With Periodic Boundary Conditions
,”
J. Phys. Chem. B
,
108
(
40
), pp.
15873
15879
.10.1021/jp0477147
70.
Tazi
,
S.
,
Botan
,
A.
,
Salanne
,
M.
,
Marry
,
V.
,
Turq
,
P.
, and
Rotenberg
,
B.
,
2012
, “
Diffusion Coefficient and Shear Viscosity of Rigid Water Models
,”
J. Phys.: Condens. Matter
,
24
(
28
), p.
284117
.10.1088/0953-8984/24/28/284117
71.
Berendsen
,
H. J. C.
,
Grigera
,
J. R.
, and
Straatsma
,
T. P.
,
1987
, “
The Missing Term in Effective Pair Potentials
,”
J. Phys. Chem.
,
91
(
24
), pp.
6269
6271
.10.1021/j100308a038
72.
Abascal
,
J. L. F.
, and
Vega
,
C.
,
2005
, “
A General Purpose Model for the Condensed Phases of Water: TIP4P/2005
,”
J. Chem. Phys.
,
123
(
23
), p.
234505
.10.1063/1.2121687
73.
Krynicki
,
K.
,
Green
,
C.
, and
Sawyer
,
D.
,
1978
, “
Pressure and Temperature Dependence of Self-Diffusion in Water
,”
Faraday Discuss. Chem. Soc.
,
66
, pp.
199
208
.10.1039/dc9786600199
74.
Harris
,
K. R.
, and
Woolf
,
L. A.
,
2004
, “
Temperature and Volume Dependence of the Viscosity of Water and Heavy Water at Low Temperatures
,”
J. Chem. Eng. Data
,
49
(
4
), pp.
1064
1069
.10.1021/je049918m
75.
Lide
,
D.
,
2001
,
CRC Handbook of Chemistry and Physics
,
CRC Press
,
Boca Raton, FL
.
76.
Ramires
,
M.
,
de Castro
,
C. N.
,
Nagazaka
,
Y.
,
Nagashima
,
A.
,
Assael
,
M.
, and
Wakeham
,
W.
,
1995
, “
Standard Reference Data for the Thermal Conductivity of Water
,”
J. Phys. Chem. Ref. Data
,
24
, pp.
1377
1381
.10.1063/1.555963
You do not currently have access to this content.