Experiments have been conducted to characterize the viscosity and friction factor of aluminum oxide (Al2O3) nanoparticle dispersions at 6 vol. % in water. Rheological characterization of the Al2O3 nanofluid has shown that it exhibits a Newtonian fluid behavior for the shear rate range of 6 to 122 s−1 at temperatures between 6 and 75 °C. Friction factor results of the nanofluid flowing through circular tubes of 1 m in length with different inner tube diameters (2.97 and 4.45 mm) were experimentally measured in the laminar and the onset of transition regions. The experimental results from this study indicate that, when the nanofluid properties are properly characterized, the friction factors of the Al2O3 nanofluid are largely in agreement with classical friction factor theory for single-phase flow. An early transition to turbulent flow is observed for the nanofluid flow at a Reynolds number of approximately 1500, when compared with water flow where transition occurs at the textbook Reynolds number of roughly 2300.

References

References
1.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.10.1021/i160003a005
2.
Ahuja
,
A. S.
,
1975
, “
Augmentation of Heat Transport in Laminar Flow of Polystyrene Suspensions. I. Experiments and Results
,”
J. Appl. Phys.
,
46
(
8
), pp.
3408
3416
.10.1063/1.322107
3.
Ahuja
,
A. S.
,
1975
, “
Measurement of Thermal Conductivity of (Neutrally and Nonneutrally Buoyant) Stationary Suspensions by the Unsteady-State Method
,”
J. Appl. Phys.
,
46
(
2
), pp.
747
755
.10.1063/1.321640
4.
Masuda
,
H.
,
Ebata
,
A.
,
Teramea
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles
,”
Netsu Bussei
,
7
(
4
), pp.
227
233
.10.2963/jjtp.7.227
5.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition
,
D. A.
Siginer
and
H. P.
Wang
, eds.,
Fluids Engineering Division
,
San Francisco, CA
, 231, pp.
99
105
.
6.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2005
, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
,
94
(
2
), p.
025901
.10.1103/PhysRevLett.94.025901
7.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
8.
Yang
,
Y.
,
Zhang
,
Z. G.
,
Grulke
,
E. A.
,
Anderson
,
W. B.
, and
Wu
,
G.
,
2005
, “
Heat Transfer Properties of Nanoparticle-in-Fluid Dispersions (Nanofluids) in Laminar Flow
,”
Int. J. Heat Mass Transfer
,
48
(
6
), pp.
1107
1116
.10.1016/j.ijheatmasstransfer.2004.09.038
9.
Fotukian
,
S. M.
, and
Nasr Esfahany
,
M.
,
2010
, “
Experimental Investigation of Turbulent Convective Heat Transfer of Dilute γ-Al2O3/Water Nanofluid Inside a Circular Tube
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
606
612
.10.1016/j.ijheatfluidflow.2010.02.020
10.
Heyhat
,
M. M.
,
Kowsary
,
F.
,
Rashidi
,
A. M.
,
Momenpour
,
M. H.
, and
Amrollahi
,
A.
,
2013
, “
Experimental Investigation of Laminar Convective Heat Transfer and Pressure Drop of Water-Based Al2O3 Nanofluids in Fully Developed Flow Regime
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
483
489
.10.1016/j.expthermflusci.2012.08.009
11.
Blasius
,
H
.,
1913
, “
Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten
,”
Forsch. Geb. Ingenieurwes.
,
131
, pp.
1
40
.
12.
Drew
,
T. B.
,
Koo
,
E. C.
, and
McAdams
,
W. H.
,
1932
, “
The Friction Factor for Clean Round Pipes
,”
Trans. AIChE
,
28
, pp.
56
72
.
13.
Churchill
,
S. W.
,
1977
, “
Friction-Factor Equation Spans All Fluid-Flow Regimes
,”
Chem. Eng.
,
84
, pp.
91
92
.
14.
Bhatti
,
M. S.
, and
Shah
,
R. K.
,
1987
, “
Turbulent and Transition Flow Convective Heat Transfer in Ducts
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakaç
,
R. K.
Shah
and
W.
Aung
, eds.,
Wiley
,
New York
, pp.
4.1
4.166
. ISBN: 0471-81702-3.
15.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.10.1115/1.1532008
16.
Williams
,
W.
,
Buongiorno
,
J.
, and
Hu
,
L.-W.
,
2008
, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042412
.10.1115/1.2818775
17.
Rea
,
U.
,
McKrell
,
T.
,
Hu
,
L.-W.
, and
Buongiorno
,
J.
,
2009
, “
Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina-Water and Zirconia-Water Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
, pp.
2042
2048
.10.1016/j.ijheatmasstransfer.2008.10.025
18.
Yu
,
L.
,
Liu
,
D.
, and
Botz
,
F.
,
2012
, “
Laminar Convective Heat Transfer of Alumina-Polyalphaolefin Nanofluids Containing Spherical and Non-Spherical Nanoparticles
,”
Exp. Therm. Fluid Sci.
,
37
, pp.
72
83
.10.1016/j.expthermflusci.2011.10.005
19.
Meyer
,
J. P.
,
McKrell
,
T. J.
, and
Grote
,
K.
,
2013
, “
The Influence of Multi-Walled Carbon Nanotubes on Single-Phase Heat Transfer and Pressure Drop Characteristics in the Transitional Flow Regime of Smooth Tubes
,”
Int. J. Heat Mass Transfer
,
58
, pp.
597
609
.10.1016/j.ijheatmasstransfer.2012.11.074
20.
Everett
,
D. H.
,
1988
,
Basic Principles of Colloid Science
,
Royal Society of Chemistry
,
London
.
21.
Kole
,
M.
, and
Dey
,
T. K.
,
2010
, “
Viscosity of Alumina Nanoparticles Dispersed in Car Engine Coolant
,”
Exp. Therm. Fluid Sci.
,
34
(
6
), pp.
677
683
.10.1016/j.expthermflusci.2009.12.009
22.
He
,
Y.
,
Jin
,
Y.
,
Chen
,
H.
,
Ding
,
Y.
,
Cang
,
D.
, and
Lu
,
H.
,
2007
, “
Heat Transfer and Flow Behaviour of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2272
2281
.10.1016/j.ijheatmasstransfer.2006.10.024
23.
Chen
,
H.
,
Ding
,
Y.
,
Lapkin
,
A.
, and
Fan
,
X.
,
2009
, “
Rheological Behaviour of Ethylene Glycol-Titanate Nanotube Nanofluids
,”
J. Nanopart. Res.
,
11
(
6
), pp.
1513
1520
.10.1007/s11051-009-9599-9
24.
Garg
,
P.
,
Alvarado
,
J. L.
,
Marsh
,
C.
,
Carlson
,
T. A.
,
Kessler
,
D. A.
, and
Annamalai
,
K.
,
2009
, “
An Experimental Study on the Effect of Ultrasonication on Viscosity and Heat Transfer Performance of Multi-Wall Carbon Nanotube-Based Aqueous Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
, pp.
5090
5101
.10.1016/j.ijheatmasstransfer.2009.04.029
25.
Mukesh Kumar
,
P. C.
,
Kumar
,
J.
, and
Suresh
,
S.
,
2012
, “
Review on Nanofluid Theoretical Viscosity Models
,”
Int. J. Eng. Innovation Res.
,
1
(
2
), pp.
128
134
. Available at: http://www.ijeir.org/administrator/components/com_jresearch/files/publications/IJEIR_98_Final.pdf
26.
CRC
Handbook of Chemistry and Physics
,
87th ed.
,
CRC
,
Boca Raton, FL
. ISBN: 0849-30487-3.
27.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
28.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
You do not currently have access to this content.