Microfluidic devices can make a significant impact in many fields where obtaining a rapid response is critical, particularly in analyses involving biological particles, from deoxyribonucleic acid (DNA) and proteins, to cells. Microfluidics has revolutionized the manner in which many different assessments/processes are carried out, since it offers attractive advantages over traditional bench-scale techniques. Some of the advantages are: small sample and reagent amounts, higher resolution and sensitivity, improved level of integration and automation, lower cost and much shorter processing times. There is a growing interest on the development of techniques that can be used in microfluidics devices. Among these, electrokinetic techniques have shown great potential due to their flexibility. Dielectrophoresis (DEP) is an electrokinetic mechanism that refers to the interaction of a dielectric particle with a spatially non-uniform electric field; this leads to particle movement due to polarization effects. DEP offers great potential since it can be carried out employing DC and AC electric fields, and neutral and charged particles can be manipulated. This work is focused on the use of insulator based dielectrophoresis (iDEP), a novel dielectrophoretic mode that employs arrays of insulating structures to generate dielectrophoretic forces. Successful micro and nanoparticles manipulation can be achieved employing iDEP, due to its unique characteristics that allow for great flexibility. In this work, microchannels containing arrays of cylindrical insulating posts were employed to concentrate, sort and separate microparticles. Mathematical modeling with COMSOL® was performed to identify optimal device configuration. Different sets of experiments were carried out employing DC and AC potentials. The results demonstrated that effective and fast particle manipulation is possible by fine tuning dielectrophoretic force and electroosmotic flow.

References

References
1.
Jesús-Pérez
,
N. M.
, and
Lapizco-Encinas
,
B. H.
,
2011
, “
Dielectrophoretic Monitoring of Microorganisms in Environmental Applications
,”
Electrophoresis
,
32
(
17
), pp.
2331
2357
.10.1002/elps.201100107
2.
Whitesides
,
G. M.
,
2006
, “
The Origins and the Future of Microfluidics
,”
Nature
,
442
(
7101
), pp.
368
373
.10.1038/nature05058
3.
Srivastava
,
S. K.
,
Baylon-Cardiel
,
J. L.
,
Lapizco-Encinas
,
B. H.
, and
Minerick
,
A. R.
,
2011
, “
A Continuous DC-Insulator Dielectrophoretic Sorter of Microparticles
,”
J. Chromatogr. A
,
1218
(
13
), pp.
1780
1789
.10.1016/j.chroma.2011.01.082
4.
Srivastava
,
S.
,
Gencoglu
,
A.
, and
Minerick
,
A.
,
2010
, “
DC Insulator Dielectrophoretic Applications in Microdevice Technology: A Review
,”
Anal. Bioanal. Chem.
,
399
(
1
), pp.
301
321
.10.1007/s00216-010-4222-6
5.
Benguigui
,
L.
, and
Lin
,
I. J.
,
1984
, “
Phenomenological Aspect of Particle Trapping by Dielectrophoresis
,”
J. Appl. Phys.
,
56
, pp.
3294
3297
.10.1063/1.333850
6.
Lapizco-Encinas
,
B. H.
,
Simmons
,
B. A.
,
Cummings
,
E. B.
, and
Fintschenko
,
Y.
,
2004
, “
Dielectrophoretic Concentration and Separation of Live and Dead Bacteria in an Array of Insulators
,”
Anal. Chem.
,
76
(
6
), pp.
1571
1579
.10.1021/ac034804j
7.
Jones
,
T. B.
,
1995
,
Electromechanics of Particles
,
Cambridge University
Press, Cambridge, UK.
8.
Cummings
,
E. B.
, and
Singh
,
A. K.
,
2003
, “
Dielectrophoresis in Microchips Containing Arrays of Insulating Posts: Theoretical and Experimental Results
,”
Anal. Chem.
,
75
(
18
), pp.
4724
4731
.10.1021/ac0340612
9.
Cummings
,
E. B.
,
2003
, “
Streaming Dielectrophoresis for Continuous-Flow Microfluidic Devices
,”
IEEE Eng. Med. Biol. Mag.
,
22
(
6
), pp.
75
84
.10.1109/MEMB.2003.1266050
10.
Chen
,
K. P.
,
Pacheco
,
J. R.
,
Hayes
,
M. A.
, and
Staton
,
S. J. R.
,
2009
, “
Insulator-Based Dielectrophoretic Separation of Small Particles in a Sawtooth Channel
,”
Electrophoresis
,
30
(
9
), pp.
1441
1448
.10.1002/elps.200800833
11.
Zhu
,
J. J.
, and
Xuan
,
X. C.
,
2009
, “
Particle Electrophoresis and Dielectrophoresis in Curved Microchannels
,”
J. Colloid Interface Sci.
,
340
(
2
), pp.
285
290
.10.1016/j.jcis.2009.08.031
12.
Patel
,
S.
,
Showers
,
D.
,
Vedantam
,
P.
,
Tzeng
,
T.-R.
,
Qian
,
S.
, and
Xuan
,
X.
,
2012
, “
Microfluidic Separation of Live and Dead Yeast Cells Using Reservoir-Based Dielectrophoresis
,”
Biomicrofluidics
,
6
(
3
), p.
034102
.10.1063/1.4732800
13.
Weiss
,
N. G.
,
Jones
,
P. V.
,
Mahanti
,
P.
,
Chen
,
K. P.
,
Taylor
,
T. J.
, and
Hayes
,
M. A.
,
2011
, “
Dielectrophoretic Mobility Determination in DC Insulator-Based Dielectrophoresis
,”
Electrophoresis
,
32
(
17
), pp.
2292
2297
.10.1002/elps.201100034
14.
Nakano
,
A.
,
Camacho-Alanis
,
F.
,
Chao
,
T.-C.
, and
Ros
,
A.
,
2012
, “
Tuning Direct Current Streaming Dielectrophoresis of Proteins
,”
Biomicrofluidics
,
6
(
3
), p.
034108
.10.1063/1.4742695
15.
Camacho-Alanis
,
F.
,
Gan
,
L.
, and
Ros
,
A.
,
2012
, “
Transitioning Streaming to Trapping in DC Insulator-Based Dielectrophoresis for Biomolecules
,”
Sens. Actuators B
,
173
(
0
), pp.
668
675
.10.1016/j.snb.2012.07.080
16.
Nakano
,
A.
,
Chao
,
T.-C.
,
Camacho-Alanis
,
F.
, and
Ros
,
A.
,
2011
, “
Immunoglobulin G and Bovine Serum Albumin Streaming Dielectrophoresis in a Microfluidic Device
,”
Electrophoresis
,
32
(
17
), pp.
2314
2322
.10.1002/elps.201100037
17.
Kang
,
Y.
,
Li
,
D.
,
Kalams
,
S.
, and
Eid
,
J.
,
2008
, “
DC-Dielectrophoretic Separation of Biological Cells by Size
,”
Biomed. Microdevices
,
10
(
2
), pp.
243
249
.10.1007/s10544-007-9130-y
18.
Kang
,
K. H.
,
Kang
,
Y.
,
Xuan
,
X.
, and
Li
,
D.
,
2006
, “
Continuous Separation of Microparticles by Size With Direct Current-Dielectrophoresis
,”
Electrophoresis
,
27
(
3
), pp.
694
702
.10.1002/elps.200500558
19.
Baylon-Cardiel
,
J. L.
,
Lapizco-Encinas
,
B. H.
,
Reyes-Betanzo
,
C.
,
Chávez-Santoscoy
,
A. V.
, and
Martínez Chapa
,
S. O.
,
2009
, “
Prediction of Trapping Zones in an Insulator-Based Dielectrophoretic Device
,”
Lab Chip
,
9
(
20
), pp.
2896
2901
.10.1039/b906976c
20.
Baylon-Cardiel
,
J. L.
,
Jesús-Pérez
,
N. M.
,
Chávez-Santoscoy
,
A. V.
, and
Lapizco-Encinas
,
B. H.
,
2010
, “
Controlled Microparticle Manipulation Employing Low Frequency Alternating Electric Fields in an Array of Insulators
,”
Lab Chip
,
10
(
23
), pp.
3235
3242
.10.1039/c0lc00097c
21.
Hayes
,
M. A.
,
Ketherpal
,
I.
, and
Ewing
,
A. G.
,
1993
, “
Effects of Buffer Ph on Electroosmotic Flow Control by an Applied Radial Voltage Fro Capillary Zone Electrophoresis
,”
Anal. Chem.
,
65
, pp.
27
31
.10.1021/ac00049a007
22.
Kwon
,
J.-S.
,
Maeng
,
J.-S.
,
Chun
,
M.-S.
, and
Song
,
S.
,
2008
, “
Improvement of Microchannel Geometry Subject to Electrokinesis and Dielectrophoresis Using Numerical Simulations
,”
Microfluid. Nanofluid.
,
5
(
1
), pp.
23
31
.10.1007/s10404-007-0210-3
23.
Chávez-Santoscoy
,
A. V.
,
Baylon-Cardiel
,
J. L.
,
Moncada-Hernández
,
H.
, and
Lapizco-Encinas
,
B. H.
,
2011
, “
On the Selectivity of an Insulator-Based Dielectrophoretic Microdevice
,”
Sep. Sci. Technol.
,
46
(
3
), pp.
384
394
.10.1080/01496395.2010.520295
24.
Gallo-Villanueva
,
R.
,
Pérez-González
,
V. H.
,
Davalos
,
R.
, and
Lapizco-Encinas
,
B. H.
,
2011
, “
Separation of Mixtures of Particles in a Multipart Microdevice Employing Insulator-Based Dielectrophoresis
,”
Electrophoresis
,
32
(
18
), pp.
2456
2465
.10.1002/elps.201100174
You do not currently have access to this content.