Nanofluidic devices have a broad range of applications resulting from the dominance of surface-fluid interactions. Examples include molecular gating, sample preconcentration, and sample injection. Manipulation of small fluid samples is ideal for micro total analysis systems or lab on chip devices which perform multiple unit operations on a single chip. In this paper, fabrication procedures for two different ultra-low aspect ratio (ULAR) channel network designs are presented. The ULAR provides increased throughput compared to higher aspect ratio features with the same critical dimensions. Channel network designs allow for integration between microscale and nanoscale fluidic networks. A modified calcium assisted glass–glass bonding procedure was developed to fabricate chemically uniform, all glass nanochannels. A polydimethylsiloxane (PDMS)-glass adhesive bonding procedure was also developed as adhesive bonding allows for more robust fabrication with lower sensitivity to surface defects. The fabrication schemes presented allow for a broad array of available parameters for facile selection of device fabrication techniques depending on desired applications for lab on chip devices.

References

References
1.
Swaminathan
,
V. V.
,
Gibson
,
L. R.
, II
,
Pinti
,
M.
,
Prakash
,
S.
,
Bohn
,
P. W.
, and
Shannon
,
M. A.
,
2012
, “
Ionic Transport in Nanocapillary Array Membranes
,”
J. Nanopart. Res.
,
14
, p.
951
.10.1007/s11051-012-0951-0
2.
Prakash
,
S.
,
Piruska
,
A.
,
Gatimu
,
E. N.
,
Bohn
,
P. W.
,
Sweedler
,
J. V.
, and
Shannon
,
M. A.
,
2008
, “
Nanofluidics: Systems and Applications
,”
IEEE Sens. J.
,
8
(
5
), pp.
441
450
.10.1109/JSEN.2008.918758
3.
Prakash
,
S.
,
Karacor
,
M. B.
, and
Banerjee
,
S.
,
2009
, “
Surface Modification in Microsystems and Nanosystems
,”
Surf. Sci. Rep.
,
64
(
7
), pp.
233
254
.10.1016/j.surfrep.2009.05.001
4.
Prakash
,
S.
, and
Karacor
,
M. B.
,
2011
, “
Characterizing Stability of “Click” Modified Glass Surfaces to Common Microfabrication Conditions and Aqueous Electrolyte Solutions
,”
Nanoscale
,
3
(
8
), pp.
3309
3315
.10.1039/c1nr10261c
5.
Shannon
,
M. A.
,
2012
, “
Water Desalination: Fresh for Less
,”
Nat. Nanotechnol.
,
5
, pp.
248
250
.10.1038/nnano.2010.71
6.
Kim
,
S. J.
,
Ko
,
S. H.
,
Kang
,
K. H.
, and
Han
,
J.
,
2010
, “
Direct Seawater Desalination by Ion Concentration Polarization
,”
Nat. Nanotechnol.
,
5
, pp.
297
301
.10.1038/nnano.2010.34
7.
Kuo
,
T. C.
,
Cannon
,
D. M.
Jr.
,
Chen
,
Y.
,
Tulock
,
J. J.
,
Shannon
,
M. A.
,
Sweedler
,
J. V.
, and
Bohn
,
P. W.
,
2003
, “
Gateable Nanofluidic Interconnects for Multilayed Microfluidic Separation Systems
,”
Anal. Chem.
,
75
(
8
), pp.
1861
1867
.10.1021/ac025958m
8.
Pardon
,
G.
, and
Wijingaart
,
W. V. D.
, “
Modelling and Simulation of Electrostatically Gated Nanochannels
,”
Adv. Colloid Interface Sci.
(in press).
9.
Goswami
,
P.
, and
Chakraborty
,
S.
,
2010
, “
Energy Transfer through Streaming Effects in Time-Periodic Pressure-Driven Nanochannel Flows With Interfacial Slip
,”
Langmuir
,
26
(
1
), pp.
581
590
.10.1021/la901209a
10.
Pennathur
,
S.
,
Eijkel
,
J. C.
, and
Berg
,
A. V. D.
,
2007
, “
Energy Conversion in Microsystems: Is There a Role for Micro/Nanofluidics
,”
Lab Chip
,
10
, pp.
1234
1237
.10.1039/B712893M
11.
Matteucci
,
M.
,
Christiansen
,
T. L.
,
Tanzi
,
S.
,
Ostergaard
,
P. F.
, and
Larsen
,
S. T.
,
2013
, “
Fabrication and Characterization of Injection Molded Multi Level Nano and Microfluidic Systems
,”
Microelectron. Eng.
,
111
, pp.
294
298
.10.1016/j.mee.2013.01.060
12.
Yasuri
,
T.
,
Rahong
,
S.
,
Motoyama
,
K.
,
Yanagida
,
T.
,
Wu
,
Q.
,
Kaji
,
N.
,
Kanai
,
M.
,
Doi
,
K.
,
Nagashima
,
K.
,
Tokeshi
,
M.
,
Taniguchi
,
M.
,
Kawano
,
S.
,
Kawai
,
T.
, and
Baba
,
Y.
,
2013
, “
DNA Manipulation and Separation in Sublithographic-Scale Nanowire Array
,”
ACS Nano
,
7
(
4
), pp.
3029
3035
.10.1021/nn4002424
13.
Fu
,
J.
,
Schoch
,
R. B.
,
Stevens
,
A. L.
,
Tannenbaum
,
S. R.
, and
Han
,
J.
,
2007
, “
A Patterned Anisotropic Nanofluidic Sieving Structure for Continuous-Flow Separation of DNA and Proteins
,”
Nat. Nanotechnol.
,
2
(
2
), pp.
121
128
.10.1038/nnano.2006.206
14.
Prakash
,
S.
,
Pinti
,
M.
, and
Bhushan
,
B.
,
2012
, “
Theory, Fabrication and Applications of Microfluidic and Nanofluidic Biosensors
,”
Philos. Trans. R. Soc. London
,
370
, pp.
2269
2303
.10.1098/rsta.2011.0498
15.
Mark
,
D.
,
Haeberle
,
S.
,
Roth
,
G.
,
Stetten
,
F. V.
, and
Zengerle
,
R.
,
2012
, “
Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics, and Applications
,”
Chem. Soc. Rev.
,
39
, pp.
1153
1182
.10.1039/b820557b
16.
Kovarik
,
M. L.
,
Gach
,
P. C.
,
Ornoff
,
D. M.
,
Wang
,
Y.
,
Balowski
,
J.
,
Farrag
,
L.
, and
Allbritton
,
N. L.
,
2012
, “
Micro Total Analysis Systems for Cell Biology and Biochemical Assays
,”
Anal. Chem.
,
84
, pp.
516
540
.10.1021/ac202611x
17.
Rios
,
A.
,
Zougagh
,
M.
, and
Avila
,
M.
,
2012
, “
Miniaturization Through Lab-on-a-Chip: Utopia or Reality for Routine Laboratories? A Review
,”
Anal. Chim. Acta
,
740
, pp.
1
11
.10.1016/j.aca.2012.06.024
18.
Squires
,
T. M.
,
Messinger
,
R. J.
, and
Manalis
,
S. R.
,
2008
, “
Making it Stick: Convection, Reaction and Diffusion in Surface-Based Biosensors
,”
Nat. Biotechnol.
,
26
(
4
), pp.
417
426
.10.1038/nbt1388
19.
Pinti
,
M.
, and
Prakash
,
S.
,
2013
, “
Fabrication of Hybrid Micro-Nanofluidic Devices With Centimeter Long Ultra-Low Aspect Ratio Nanochannels
,” Proceedings of ASME 2013 International Mechanical Engineering Congress and Exposition, IMECE2013_65763, November 17–21,
San Diego, CA
(in press).
20.
Duan
,
C.
,
Wang
,
W.
, and
Xie
,
Q.
,
2013
, “
Fabrication of Nanofluidic Devices
,”
Biomicrofluidics
,
7
, p.
026501
.10.1063/1.4794973
21.
Pinti
,
M.
, and
Prakash
,
S.
,
2011
, “
A Two-Step Wet Etch Process for the Facile Fabrication of Hybrid Micro-Nanofluidic Devices
,” Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE2011_64508, November 11–17,
Denver, CO
, pp. 647–651.
22.
Huang
,
X. T.
,
Gupta
,
C.
, and
Pennathur
,
S.
,
2010
, “
A Novel Fabrication Method for Centimeter-Long Surface-Micromachined Nanochannels
,”
J. Micromech. Microeng.
,
20
, p.
015040
.10.1088/0960-1317/20/1/015040
23.
Han
,
A.
,
Rooij
,
N. F. D.
, and
Staufer
,
U.
,
2006
, “
Design and Fabrication of Nanofluidic Devices by Surface Micromachining
,”
Nanotechnology
,
17
(
10
), pp.
2498
2503
.10.1088/0957-4484/17/10/010
24.
Duan
,
C.
, and
Majumdar
,
A.
,
2010
, “
Anomalous Ion Transport in 2-nm Hydrophillic Nanochannels
,”
Nat. Nanotechnol.
,
5
, pp.
848
852
.10.1038/nnano.2010.233
25.
Menard
,
L. D.
, and
Ramsey
,
J. M.
,
2011
, “
The Fabrication of Sub-5 nm Nanochannels in Insulating Substrates Using Focused Ion Beam Milling
,”
Nano Lett.
,
11
, pp.
512
517
.10.1021/nl103369g
26.
Mao
,
P.
, and
Han
,
J.
,
2005
, “
Fabrication and Characterization of 20 nm Planar Nanofluidic Channels by Glass-Glass and Glass-Silicon Bonding
,”
Lab Chip
,
5
, pp.
837
844
.10.1039/b502809d
27.
Haneveld
,
J.
,
Tas
,
N. R.
,
Brunets
,
N.
,
Jansen
,
H. V.
, and
Elwenspoek
,
M.
,
2008
, “
Capillary Filling of Sub-10 nm Nanochannels
,”
J. Appl. Phys.
,
104
, p.
014309
.10.1063/1.2952053
28.
Duan
,
C.
,
Karnik
,
R.
,
Liu
,
M. C.
, and
Majumdar
,
A.
,
2012
, “
Evaporation-Induced Cavitation in Nanofluidic Channels
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
10
), pp.
3688
3693
.10.1073/pnas.1014075109
29.
Allen
,
P. B.
, and
Chiu
,
D. T.
,
2008
, “
Calcium-Assisted Glass-to-Glass Bonding for Fabrication of Glass Microfluidic Devices
,”
Anal. Chem.
,
80
, pp.
7153
7157
.10.1021/ac801059h
30.
Iliescu
,
C.
,
Chen
,
B.
, and
Miao
,
J.
,
2008
, “
On the Wet Etching of Pyrex Glass
,”
Sens. Actuators
, A,
143
, pp.
154
161
.10.1016/j.sna.2007.11.022
31.
Bhattacharya
,
S.
,
Datta
,
A.
,
Berg
,
J. M.
, and
Gangopadhyay
,
S.
,
2005
, “
Studies on Surface Wettability of Poly(Dimethyl) Siloxane (PDMS) and Glass Under Oxygen-Plasma Treatment and Correlation with Bond Strength
,”
J. Microelectromech. Syst.
,
14
(
3
), pp.
590
597
.10.1109/JMEMS.2005.844746
32.
Knight
,
R. D.
,
2003
,
Physics for Scientists and Engineers: A Strategic Approach
,
Addison-Wesley
,
San Francisco, CA
.
33.
Tay
,
F.
,
Iliescu
,
C.
,
Jing
,
J.
, and
Miao
,
J.
,
2006
, “
Defect-Free Wet Etching Through Pyrex Glass Using Cr/Au Mask
,”
Microsyst. Technol.
,
12
, pp.
935
939
.10.1007/s00542-006-0116-0
34.
Zhu
,
H.
,
Holl
,
M.
,
Ray
,
T.
,
Bhushan
,
S.
, and
Meldrum
,
D. R.
,
2009
, “
Characterization of Deep Wet Etching of Fused Silica Glass for Single Cell and Optical Sensor Deposition
,”
J. Micromech. Microeng.
,
19
, p.
065013
.10.1088/0960-1317/19/6/065013
35.
Prakash
,
S.
,
Long
,
T. M.
,
Selby
,
J. C.
,
Moore
,
J. S.
, and
Shannon
,
M. A.
,
2007
, ““
Click” Modification of Silica Surfaces and Glass Microfluidic Channels
,”
Anal. Chem.
,
79
(
4
), pp.
1661
1667
.10.1021/ac061824n
36.
Yeom
,
J.
,
Wu
,
Y.
,
Selby
,
J. C.
, and
Shannon
,
M. A.
,
2005
, “
Maximum Achievable Aspect Ratio in Deep Reactive Ion Etching of Silicon Due to Aspect Ratio Dependent Transport and the Microloading Effect
,”
J. Vac. Sci. Technol. B
,
23
(
6
), pp.
2319
2329
.10.1116/1.2101678
37.
Yeom
,
J.
, and
Shannon
,
M. A.
,
2009
, “
Detachment Lithography of Photosensitive Polymers: A Route to Fabricating Three-Dimensional Structures
,”
Adv. Funct. Mater.
,
20
, pp.
289
295
.10.1002/adfm.200900686
38.
Jackman
,
R. J.
,
Wilbur
,
J. L.
, and
Whitesides
,
G. M.
,
1995
, “
Fabrication of Submicrometer Features on Curved Substrates by Microcontact Printing
,”
Science
,
269
, pp.
664
666
.10.1126/science.7624795
39.
Leong
,
T. G.
,
Lester
,
P. A.
,
Koh
,
T. L.
,
Call
,
E. K.
, and
Gracias
,
D. H.
,
2007
, “
Surface Tension-Driven Self-Folding Polyhedra
,”
Langmuir
,
23
, pp.
8747
8751
.10.1021/la700913m
40.
Mata
,
A.
,
Fleischman
,
A. J.
, and
Roy
,
S.
,
2005
, “
Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems
,”
Biomed. Microdevices
,
7
(
4
), pp.
281
293
.10.1007/s10544-005-6070-2
You do not currently have access to this content.