This paper explores and demonstrates the potential of using pyrolytic carbon as a material for coronary stents. Stents are commonly fabricated from metal, which has worse biocompatibilty than many polymers and ceramics. Pyrolytic carbon, a ceramic, is currently used in medical implant devices due to its preferable biocompatibility properties. Micropatterned pyrolytic carbon implants can be created by growing carbon nanotubes (CNTs), and then filling the space between with amorphous carbon via chemical vapor deposition (CVD). We prepared multiple samples of two different stent-like flexible mesh designs and smaller cubic structures out of carbon-infiltrated carbon nanotubes (CI-CNT). Tension loads were applied to expand the mesh samples and we recorded the forces at brittle failure. The cubic structures were used for separate compression tests. These data were then used in conjunction with a nonlinear finite element analysis (FEA) model of the stent geometry to determine Young's modulus and maximum fracture strain in tension and compression for each sample. Additionally, images were recorded of the mesh samples before, during, and at failure. These images were used to measure an overall percent elongation for each sample. The highest fracture strain observed was 1.4% and Young's modulus values confirmed that the material was similar to that used in previous carbon-infiltrated carbon nanotube work. The average percent elongation was 86% with a maximum of 145%. This exceeds a typical target of 66%. The material properties found from compression testing show less stiffness than the mesh samples; however, specimen evaluation reveals poorly infiltrated samples.

References

References
1.
Schmidt
,
W.
,
Lanzer
,
P.
,
Behrens
,
P.
,
Topoleski
,
L.
, and
Schmitz
,
K.-P.
,
2009
, “
A Comparison of the Mechanical Performance Characteristics of Seven Drug-Eluting Stent Systems
,”
Cathet. Cardiovasc. Interv.
,
73
, pp.
350
360
.10.1002/ccd.21832
2.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley Interscience
,
New York
.
3.
Hansi
,
C.
,
Arab
,
A.
,
Rzany
,
A.
,
Ahrens
,
I.
,
Bode
,
C.
, and
Hehrlein
,
C.
,
2009
, “
Differences of Platelet Adhesion and Thrombus Activation on Amorphous Silicon Carbide, Magnesium Alloy, Stainless Steel, and Cobalt Chromium Stent Surfaces
,”
Cathet. Cardiovasc. Inter.
,
73
, pp.
488
496
.10.1002/ccd.21834
4.
Serruys
,
P.
,
Kutrykm
,
M.
, and
Ong
,
A.
,
2006
, “
Coronary-Artery Stents
,”
New Engl. J. Med.
,
354
, pp.
483
495
.10.1056/NEJMra051091
5.
Serruys
,
P.
,
Luijten
,
H.
,
Beatt
,
K.
,
Geuskens
,
R.
,
de Feyter
,
P.
,
van den Brand
,
M.
,
Reiber
,
J.
,
ten Katen
,
H.
,
van Es
,
G.
, and
Hugenholtz
,
P.
,
1988
, “
Incidence of Restenosis After Successful Coronary Angioplasty: A Time-Related Phenomenon. A Quantitative Angiographic Study in 342 Consecutive Patients at 1, 2, 3, and 4 Months
,”
Circulation
,
77
, pp.
361
371
. Available at: http://circ.ahajournals.org/content/77/2/361
6.
Iakovou
,
I.
,
Schmidt
,
T.
,
Bonizzoni
,
E.
,
Ge
,
L.
,
Sangiorgi
,
G. M.
,
Stankovic
,
G.
,
Airoldi
,
F.
,
Chieffo
,
A.
,
Montorfano
,
M.
,
Carlino
,
M.
,
Michev
,
I.
,
Corvaja
,
N.
,
Briguori
,
C.
,
Gerckens
,
U.
,
Grube
,
E.
, and
Colombo
,
A.
,
2005
, “
Incidence, Predictors, and Outcome of Thrombosis After Successful Implantation of Drug-Eluting Stents
,”
J. Am. Med. Assoc.
,
293
(
17
), pp.
2126
2130
.10.1001/jama.293.17.2126
7.
Ratner
,
B. D.
,
Hoffman
,
A. S.
,
Shoen
,
F. J.
, and
Lemons
,
J. E.
,
2004
,
Biomaterials Science: An Introduction to Materials in Medicine
,
Elsevier Academic Press
,
Oxford, UK
.
8.
Pesakova
,
V.
,
Klezl
,
Z.
,
Balik
,
M.
, and
Adam
,
M.
,
2000
, “
Biomechanical and Biological Properties of the Implant Material Carbon-Carbon Composite Covered With Pyrolytic Carbon
,”
J. Mater. Sci.: Mater. Med.
,
11
, pp.
793
798
.10.1023/A:1008953529111
9.
Stary
,
V.
,
Bacakova
,
L.
,
Hornik
,
J.
, and
Chmelik
,
V.
,
2003
, “
Bio-Compatibility of the Surface Layer of Pyrolytic Graphite
,”
Thin Solid Films
,
433
, pp.
191
198
.10.1016/S0040-6090(03)00309-2
10.
Antoniucci
,
D.
,
Bartorelli
,
A.
,
Valenti
,
R.
,
Montorsi
,
P.
,
Santor
,
G. M.
,
Fabbiocchi
,
F.
,
Bolognese
,
L.
,
Loaldi
,
A.
,
Trapani
,
M.
,
Trabattoni
,
D.
,
Moschi
,
G.
, and
Galli
,
S.
,
2000
, “
Clinical and Angiographic Outcome After Coronary Arterial Stenting With the Carbostent
,”
Am. J. Cardiol.
,
85
, pp.
821
825
.10.1016/S0002-9149(99)00874-7
11.
Kellie
,
B. M.
,
Silleck
,
A. C.
,
Bellman
,
K.
,
Snodgrass
,
R.
, and
Prakash
,
S.
,
2013
, “
Deposition of Few-Layered Graphene in a Microcombustor on Copper and Nickel Substrates
,”
RSC Adv.
,
3
, pp.
7100
7105
.10.1039/c3ra40632f
12.
Torbensen
,
K.
,
Iruthayaraj
,
J.
,
Ceccato
,
M.
,
Kongsfelt
,
M.
,
Breitenbach
,
T.
,
Pedersen
,
S. U.
, and
Daasbjerg
,
K.
,
2012
, “
Conducting and Ordered Carbon Films Obtained by Pyrolysis of Covalently Attached Polyphenylene and Polyanthracene Layers on Silicon Substrates
,”
J. Mater. Chem.
,
22
, pp.
18172
18180
.10.1039/c2jm32935b
13.
Cook
,
S. D.
,
Beckenbaugh
,
R. D.
,
Redondo
,
J.
,
Popich
,
L. S.
,
Klawitter
,
J. J.
, and
Linscheid
,
R. L.
,
1999
, “
Long Term Follow-up of Pyrolytic Carbon Metacarpophalangeal Inplants
,”
J. Bone Joint Surg.
,
81
, pp.
635
648
.
14.
Wall
,
L. B.
, and
Stern
,
P. J.
,
2013
, “
Clinical and Radiographic Outcomes of Metacarpophalangeal Joint Pyrolytic Carbon Arthroplasty for Osteoarthritis
,”
J. Hand Surg.
,
38
, pp.
537
543
.10.1016/j.jhsa.2012.11.026
15.
Behzadi
,
S.
,
Imani
,
M.
,
Yousefi
,
M.
,
Galinetto
,
P.
,
Simchi
,
A.
,
Amiri
,
H.
,
Stroeve
,
P.
, and
Mahmoudi
,
M.
,
2012
, “
Pyrolytic Carbon Coating for Cytocompatibility of Titanium Oxide Nanoparticles: A Promising Candidate for Medical Applications
,”
Nanotechnology
,
23
, p.
045102
.10.1088/0957-4484/23/4/045102
16.
Hutchison
,
D. N.
,
Morrill
,
N. B.
,
Aten
,
Q.
,
Turner
,
B. W.
,
Jensen
,
B. D.
,
Vanfleet
,
R. R.
, and
Davis
,
R. C.
,
2010
, “
Carbon Nanotubes as a Framework for High-Aspect-Ratio MEMS Fabrication
,”
J. Microelectromech. Syst.
,
19
, pp.
75
82
.10.1109/JMEMS.2009.2035639
17.
Mazloumi
,
M.
,
Shadmehr
,
S.
,
Rangom
,
Y.
,
Nazar
,
L. F.
, and
Tang
,
X. S.
,
2013
, “
Fabrication of Three-Dimensional Carbon Nanotube and Metal Oxide Hybrid Mesoporous Architectures
,”
ACS Nano
,
7
(
5
), pp.
4281
4288
.10.1021/nn400768p
18.
Fazio
,
W. C.
,
Lund
,
J. M.
,
Wood
,
T. S.
,
Jensen
,
B. D.
,
Davis
,
R. C.
, and
Vanfleet
,
R. R.
,
2011
, “
Material Properties of Carbon-Infiltrated Carbon Nanotube-Templated Structures for Microfabrication of Compliant Mechanisms
,”
Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition
, ASME Paper No. IMECE2011-64168.
19.
Auricchio
,
F.
,
Di Loreto
,
M.
, and
Sacco
,
E.
,
2001
, “
Finite-Element Analysis of a Stenotic Artery Revascularization Through a Stent Insertion
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
, pp.
249
263
.10.1080/10255840108908007
20.
Migliavacca
,
F.
,
Petrini
,
L.
,
Colombo
,
M.
,
Auricchio
,
F.
, and
Pietrabissa
,
R.
,
2002
, “
Mechanical Behavior of Coronary Stents Investigated Through the Finite Element Method
,”
J. Biomech.
,
35
, pp.
803
811
.10.1016/S0021-9290(02)00033-7
You do not currently have access to this content.