Despite the progress in tissue engineering, several challenges must be addressed for organ printing to become a reality. The most critical challenge is the integration of a vascular network, which is also a problem that the majority of tissue engineering technologies are facing. An embedded microfluidic channel network is probably the most promising solution to this problem. However, the available microfluidic channel fabrication technologies either have difficulty achieving a three-dimensional complex structure or are difficult to integrate within cell printing process in tandem. In this paper, a novel printable vessel-like microfluidic channel fabrication method is introduced that enables direct bioprinting of cellular microfluidic channels in form of hollow tubes. Alginate and chitosan hydrogels were used to fabricate microfluidic channels showing the versatility of the process. Geometric characterization was performed to understand effect of biomaterial and its flow rheology on geometric properties. Microfluidic channels were printed and embedded within bulk hydrogel to test their functionality through perfusion of cell type oxygenized media. Cell viability experiments were conducted and showed great promise of the microfluidic channels for development of vascular networks.

References

1.
Ozbolat
, I
. T.
, and
Yu
,
Y.
,
2013
, “
Bioprinting Towards Organ Fabrication: Challenges and Future Trends
,”
IEEE Trans. Biomed. Eng.
,
60
(
3
), pp.
1
9
.10.1109/TBME.2013.2243912
2.
Lee
,
W.
,
Lee
,
V.
,
Polio
,
S.
,
Keegan
,
P.
,
Lee
,
J. H.
,
Fischer
,
K.
, and
Park
,
J. K.
,
Yoo
SS.
,
2010
, “
On-Demand Three-Dimensional Freeform Fabrication of Multi-Layered Hydrogel Scaffold With Fluidic Channels
,”
Biotechnol. Bioeng.
,
105
(
6
), pp.
1178
1186
.10.1002/bit.22613
3.
Ling
,
Y.
,
Rubin
,
J.
,
Deng
,
Y.
,
Huang
,
C.
,
Demirci
,
U.
,
Karp
,
J. M.
, and
Khademhosseini
,
A.
,
2007
, “
A Cell-Laden Microfluidic Hydrogel
,”
Lab Chip
,
7
(
6
), pp.
756
762
.10.1039/b615486g
4.
Cuchiara
,
M. P.
,
Allen
,
A. C. B.
,
Chen
,
T. M.
,
Miller
,
J. S.
,
West
,
J. L.
,
2010
, “
Multilayer Microfluidic PEGDA Hydrogels
,”
Biomaterials
,
31
(
21
), pp.
5491
5497
.10.1016/j.biomaterials.2010.03.031
5.
Golden
,
A. P.
, and
Tien
,
J.
,
2007
, “
Fabrication of Microfluidic Hydrogels Using Molded Gelatin as a Sacrificial Element
,”
Lab Chip
,
7
(
6
), pp.
720
725
.10.1039/b618409j
6.
Offra
,
S.-N.
,
Noga
,
L.
,
Ruthy
,
Z.
,
Shy
,
S.
, and
Dror
,
S.
,
2009
, “
Laser Photoablation of Guidance Microchannels Into Hydrogels Directs Cell Growth in Three Dimensions
,”
Biophys J.
,
96
(
11
), pp.
4743
4752
.10.1016/j.bpj.2009.03.019
7.
Chan
, V
.
,
lutuna
,
P.
,
Jeong
,
J. H.
,
Kong
,
H.
, and
Bashir
,
R.
,
2010
, “
Three-Dimensional Photopatterning of Hydrogels Using Stereolithography for Long-Term Cell Encapsulation
,”
Lab Chip.
,
10
(
16
), pp.
2062
2070
.10.1039/c004285d
8.
Lee
,
S.-H.
,
Moon
,
J. J.
, and
West
,
J. L.
,
2008
, “
Three-Dimensional Micropatterning of Bioactive Hydrogels Via Two-Photon Laser Scanning Photolithography for Guided 3D Cell Migration
,”
Hydrogel Solutions
,
29
(
20
), pp.
2962
2968
.
9.
Wang
,
L.
,
Kodzius
,
R.
,
Yi
,
X.
,
Li
,
S.
,
Hui
,
Y. S.
,
Wen
,
W.
,
2012
, “
Prototyping Chips in Minutes: Direct Laser Plotting (DLP) of Functional Microfluidic Structures
,”
Sens. Actuators B
,
168
(
0
), pp.
214
222
.10.1016/j.snb.2012.04.011
10.
Hnatovsky
,
C.
,
Taylor
,
R. S.
,
Simova
,
E.
,
Bhardwaj
,
V. R.
,
Rayner
,
D. M.
,
Corkum
,
P. B.
,
2005
, “
Polarization-Selective Etching in Femtosecond Laser-Assisted Microfluidic Channel Fabrication in Fused Silica
,”
Opt. Lett.
,
30
(
14
), pp.
1867
1869
.10.1364/OL.30.001867
11.
Zheng
,
Y.
,
Henderson
,
P. W.
,
Choi
,
N. W.
,
Bonassar
,
L. J.
,
Spector
,
J. A.
, and
Stroock
,
A. D.
,
2011
, “
Microstructured Templates for Directed Growth and Vascularization of Soft Tissue In Vivo
,”
Biomaterials
,
32
(
23
), pp.
5391
5401
.10.1016/j.biomaterials.2011.04.001
12.
Nazhat
,
S. N.
,
Neel
,
E. A.
,
Kidane
,
A.
,
Ahmed
, I
.
,
Hope
,
C.
,
Kershaw
,
M.
,
Lee
,
P. D.
,
Stride
,
E.
,
Saffari
,
N.
,
Knowles
,
J. C.
, and
Brown
,
R. A.
,
2006
, “
Controlled Microchannelling in Dense Collagen Scaffolds by Soluble Phosphate Glass Fibers
,”
Biomacromolecules
,
8
(
2
), pp.
543
551
.10.1021/bm060715f
13.
Kim
,
D.-N.
,
Lee
,
W.
, and
Koh
,
W.-G.
,
2008
, “
Micropatterning of Proteins on the Surface of Three-Dimensional Poly(Ethylene Glycol) Hydrogel Microstructures
,”
Anal Chim. Acta
,
609
(
1
), pp.
59
65
.10.1016/j.aca.2007.12.024
14.
Liu
,
S.
,
Xiong
,
Z.
,
Wang
,
X.
,
Yan
,
Y.
,
Liu
,
H.
, and
Zhang
,
R.
,
2009
, “
Direct Fabrication of a Hybrid Cell/Hydrogel Construct by a Double-Nozzle Assembling Technology
,”
J. Bioactive Compat. Polym.
,
24
(
3
), pp.
249
265
.10.1177/0883911509102347
15.
Skardal
,
A.
,
Zhang
,
J.
, and
Prestwich
,
G. D.
,
2010
, “
Bioprinting Vessel-Like Constructs Using Hyaluronan Hydrogels Crosslinked With Tetrahedral Polyethylene Glycol Tetracrylates
,”
Biomaterials
,
31
(
24
), pp.
6173
6181
.10.1016/j.biomaterials.2010.04.045
16.
Landers
,
R.
,
Hubner
,
U.
,
Schmelzeisen
,
R.
, and
Mulhaupt
,
R.
,
2002
, “
Rapid Prototyping of Scaffolds Derived From Thermoreversible Hydrogels and Tailored for Applications in Tissue Engineering
,”
Biomaterials
,
23
(
23
), pp.
4437
4447
.10.1016/S0142-9612(02)00139-4
17.
Roth
,
E. A.
,
Xu
,
T.
,
Das
,
M.
,
Gregory
,
C.
,
Hickman
,
J. J.
, and
Boland
,
T.
,
2004
, “
Inkjet Printing for High-Throughput Cell Patterning
,”
Biomaterials
,
25
(
17
), pp.
3707
3715
.10.1016/j.biomaterials.2003.10.052
18.
Cheah
,
C. M.
,
Chua
,
C. K.
,
Leong
,
K. F.
,
Cheong
,
C. H.
, and
Naing
,
M. W.
,
2004
, “
Automatic Algorithm for Generating Complex Polyhedral Scaffold Structures for Tissue Engineering
,”
Tissue Eng.
,
10
, pp.
595
610
.10.1089/107632704323061951
19.
Fang
,
Z.
,
Starly
,
B.
, and
Sun
,
W.
,
2005
, “
Computer-Aided Characterization for Effective Mechanical Properties of Porous Tissue Scaffolds
,”
Comput.-Aided Des.
,
37
(
1
), pp.
65
72
.10.1016/j.cad.2004.04.002
20.
Zhao
,
L.
,
Lee
, V
. K.
,
Yoo
,
S. S.
,
Dai
,
G.
, and
Intes
,
X.
,
2012
, “
The Integration of 3-D Cell Printing and Mesoscopic Fluorescene Mocular Tomography of Vascular Constructs Within Thick Hydrogel Scaffolds
,”
Biomaterials
,
33
(
21
), pp.
5325
5332
.10.1016/j.biomaterials.2012.04.004
21.
Yu
,
Y.
,
2012
, “
Identification and Characterization of Cartilage Progenitor Cells by Single Cell Sorting and Cloning
,” M.S. thesis, University of Iowa, Iowa City, IA.
22.
Shin
,
S.-J.
,
Park
,
J.-Y.
,
Lee
,
J.-Y.
,
Park
,
H.
,
Park
,
Y.-D.
,
Lee
,
K.-B.
,
Whang
,
C.-M.
, and
Lee
,
S.-H.
,
2007
, “
“On the Fly” Continuous Generation of Alginate Fibers Using a Microfluidic Device
,”
Langmuir
,
23
(
17
), pp.
9104
9108
.10.1021/la700818q
23.
Bohari
,
S. P.
,
Hukins
,
D. W.
, and
Grover
,
L. M.
,
2011
, “
Effect of Calcium Alginate Concentration on Viability and Proliferation of Encapsulated Fibroblasts
,”
Biomed. Mater. Eng.
,
21
(
3
), pp.
159
170
.10.3233/BME-2011-0665
24.
Zhang
,
Y.
,
Yu
,
Y.
,
Chen
,
H.
, and
Ozbolat
, I
. T.
,
2013
,”
Characterization of Printable Cellular Micro-Fluidic Channels for Tissue Engineering
,”
Biofabrication
,
5
(
2
), p.
024004
.10.1088/1758-5082/5/2/025004
25.
Malda
,
J.
,
Klein
,
T. J.
, and
Upton
,
Z.
,
2007
, “
The Roles of Hypoxia in the In Vitro Engineering of Tissues
,”
Tissue Eng.
,
13
(
9
), pp.
2153
2162
.10.1089/ten.2006.0417
26.
Rouwkema
,
J.
,
Rivron
,
N. C.
, and
van Blitterswijk
,
C. A.
,
2008
, “
Vascularization in Tissue Engineering
,”
Trends Biotechnol.
,
26
(
8
), pp.
434
441
.10.1016/j.tibtech.2008.04.009
You do not currently have access to this content.