To assess and validate temperature measurement and data analysis techniques for a quasi-adiabatic calorimeter used to measure amplitude-dependent loss power of magnetic nanoparticles exposed to an alternating magnetic field (AMF) at radiofrequencies (160 ± 5 kHz). The data collected and methods developed were used to measure the specific loss power (SLP) for two magnetic iron oxide nanoparticles (IONPs) suspensions, developed for magnetic nanoparticle hyperthermia. Calibration was performed by comparing measured against calculated values of specific absorption rate (SAR) of a copper wire subjected to AMF. Rate of temperature rise from induced eddy currents was measured (n = 4) for a copper wire of radius 0.99 mm and length of 3.38 mm in an AMF at amplitudes (H) of 16, 20, 24, and 28 kA/m. The AMF was generated by applying an alternating current using an 80-kW induction power supply to a capacitance network containing a 13.5-cm vertical solenoid that held the calorimeter. Samples were taped to an optical fiber temperature probe and inserted into a standard (polystyrene, 5 ml) test tube which was suspended in the calorimeter. The sample was subjected to the AMF for 30 s or until the temperature of the sample, increased by 30 °C, recorded at 0.3-s intervals. The SAR of the sample was normalized by H2f1/2, averaged, and compared to theoretical values. Iron (Fe) normalized SLPs of two IONPs (JHU-MION and bionized-nanoferrite (BNF) particles (Micromod Partikeltechnologie, GmbH)) in aqueous suspension were measured in the same setup. We report experimental SAR values for the copper of 2.4 ± 0.1, 4.3 ± 0.2, 6.2 ± 0.1, and 8.5 ± 0.1 W/g compared to theoretical values 3.1 ± 0.1, 4.5 ± 0.2, 6.5 ± 0.1, and 9.2 ± 0.2 W/g at AMF amplitudes of 16 ± 0.1, 20 ± 0.2, 24 ± 0.1, and 28 ± 0.1 kA/m, respectively. Normalized experimental data followed a linear trend approximately parallel to theoretical values with an R2-value of 0.99. The measured SLPs of the JHU particles are higher than BNF particles within the tested AMF amplitude range of 15 kA/m to 45 kA/m. We demonstrated that copper can be used to calibrate magneto-thermal calorimetric systems used for SLP measurements of magnetic nanoparticles for a field range of 15–28 kA/m at 160 ± 5 kHz. We also note that the electrical conductivity, diameter of copper sample and accuracy, and response time of thermometry constrain calibration to lower amplitudes, highlighting the need for development of standard reference materials for such applications.

References

References
1.
Johannsen
,
M.
,
Gneveckow
,
U.
,
Taymoorian
,
K.
,
Thiesen
,
B.
,
Waldöfner
,
N.
,
Scholz
,
R.
,
Jung
,
K.
,
Jordan
,
A.
,
Wust
,
P.
, and
Loening
,
S. A.
,
2007
, “
Morbidity and Quality of Life During Thermotherapy Using Magnetic Nanoparticles in Locally Recurrent Prostate Cancer: Results of a Prospective Phase I Trial
,”
Int. J. Hyperthermia
,
23
(
3
), pp.
315
323
.10.1080/02656730601175479
2.
Pankhurst
,
Q. A.
,
Thanh
,
N. T. K.
,
Jones
,
S. K.
, and
Dobson
,
J.
,
2009
, “
Progress in Applications of Magnetic Nanoparticles in Biomedicine
,”
J. Phys. D: Appl. Phys.
,
42
, p.
224001
.10.1088/0022-3727/42/22/224001
3.
DeNardo
,
S. J.
,
DeNardo
,
G. L.
,
Miers
,
L. A.
,
Natarajan
,
A.
,
Foreman
,
A. R.
,
Grüttner
,
C.
,
Adamson
,
G. N.
, and
Ivkov
,
R.
,
2005
, “
Development of Tumor Targeting Bioprobes ((111)In-Chimeric L6 Monoclonal Antibody Nanoparticles) for Alternating Magnetic Field Cancer Therapy
,”
Clin. Cancer Res.
,
11
(
19 Pt 2
), pp.
7087s
7092s
.10.1158/1078-0432.CCR-1004-0022
4.
Khandhar
,
A. P.
,
Ferguson
,
R. M.
,
Simon
,
J. A.
, and
Krishnan
,
K. M.
,
2012
, “
Tailored Magnetic Nanoparticles for Optimizing Magnetic Fluid Hyperthermia
,”
J. Biomed. Mater. Res. Part A
,
100
(
3
), pp.
728
737
.10.1002/jbm.a.34011
5.
Sonvico
,
F.
,
Mornet
,
S.
,
Vasseur
,
S.
,
Dubernet
,
C.
,
Jaillard
,
D.
,
Degrouard
,
J.
,
Hoebeke
,
J.
,
Duguet
,
E.
,
Colombo
,
P.
, and
Couvreur
,
P.
,
2005
, “
Folate-Conjugated Iron Oxide Nanoparticles for Solid Tumor Targeting as Potential Specific Magnetic Hyperthermia Mediators: Synthesis, Physicochemical Characterization, and In Vitro Experiments
,”
Bioconjugate Chem.
,
16
(
5
), pp.
1181
1188
.10.1021/bc050050z
6.
Jordan
,
A.
,
Wust
,
P.
,
Scholz
,
R.
,
Tesche
,
B.
,
Fahling
,
H.
,
Mitrovics
,
T.
,
Vogl
,
T.
,
Cervós-Navarro
,
J.
, and
Felix
,
R.
,
1996
, “
Cellular Uptake of Magnetic Fuid Particles and Their Effects on Human Adenocarcinoma Cells Exposed to AC Magnetic Fields In Vitro
,”
Int. J. Hyperthermia
,
12
(
6
), pp.
705
722
.10.3109/02656739609027678
7.
Giustini
,
A. J.
,
Ivkov
,
R.
, and
Hoopes
,
P. J.
,
2011
, “
Magnetic Nanoparticle Biodistribution Following Intratumoral Administration
,”
Nanotechnology
,
22
, p.
345101
.10.1088/0957-4484/22/34/345101
8.
Bordelon
,
D. E.
,
Cornejo
,
C.
,
Grüttner
,
C.
,
Westphal
,
F.
,
DeWeese
,
T. L.
, and
Ivkov
,
R.
,
2001
, “
Magnetic Nanoparticle Heating Efficiency Reveals Magneto-Structural Differences When Characterized With Wide Ranging and High Amplitude Alternating Magnetic Fields
,”
J. Appl. Phys.
,
109
, p.
124904
.10.1063/1.3597820
9.
Bordelon
,
D. E.
,
Goldstein
,
R. C.
,
Nemkov
,
V. S.
,
Kumar
,
A.
,
Jackowski
,
J. K.
,
DeWeese
,
T. L.
, and
Ivkov
,
R.
,
2012
, “
Modified Solenoid Coil That Efficiently Produces High Amplitude AC Magnetic Fields With Enhanced Uniformity for Biomedical Applications
,”
IEEE Trans. Magn.
,
48
(
1
), pp.
47
52
.10.1109/TMAG.2011.2162527
10.
Natividad
,
E.
,
Castro
,
M.
, and
Mediano
,
A.
,
2008
, “
Accurate Measurement of The Specific Absorption Rate Using a Suitable Adiabatic Magnetothemal Setup
,”
Appl. Phys. Lett.
,
92
, p.
093116
.10.1063/1.2891084
11.
Natividad
,
E.
,
Castro
,
M.
, and
Mediano
,
A.
,
2009
, “
Adiabatic vs. Non-Adiabatic Determination of Specific Absorption Rate of Ferrofluids
,”
J. Magn. Magn. Mater.
,
321
, pp.
1497
1500
.10.1016/j.jmmm.2009.02.072
12.
Bakoglidis
,
K. D.
,
Simeonidis
,
K.
,
Sakellari
,
D.
,
Stefanou
,
G.
, and
Angelakeris
,
M.
,
2012
, “
Size-Dependent Mechanisms in AC Magnetic Hyperthermia Response of Iron-Oxide Nanoparticles
,”
IEEE Trans. Magn.
,
48
(
4
), pp.
1320
1323
.10.1109/TMAG.2011.2173474
13.
Rosensweig
,
R. E.
,
2002
, “
Heating Magnetic Fluid With Alternating Magnetic field
,”
J. Magn. Magn. Mater.
,
252
, pp.
370
374
.10.1016/S0304-8853(02)00706-0
14.
Lévy
,
M.
,
Wilhelm
,
C.
,
Siaugue
,
J. M.
,
Horner
,
O.
,
Bacri
,
J. C.
, and
Gazeau
,
F.
,
2008
, “
Magnetically Induced Hyperthermia: Size-Dependent Heating Power of γ-Fe2O3 Nanoparticles
,”
J. Phys. Condens. Matter
,
20
, p.
204133
.10.1088/0953-8984/20/20/204133
15.
Li
,
C. H.
,
Hodgins
,
P.
, and
Peterson
,
G. P.
,
2011
, “
Experimental Study of Fundamental Mechanisms in Inductive Heating of Ferromagnetic Nanoparticles Suspension (Fe3O4 Iron Oxide Ferrofluid)
,”
J. Appl. Phys.
,
110
, p.
054303
.10.1063/1.3626049
16.
Wust
,
P.
,
Gneveckow
,
U.
,
Johannsen
,
M.
,
Böhmer
,
D.
,
Henkel
,
T.
,
Kahmann
,
F.
,
Sehouli
,
J.
,
Felix
,
R.
,
Ricke
,
J.
, and
Jordan
,
A.
,
2006
, “
Magnetic Nanoparticles for Interstitial Thermotherapy-Feasibility, Tolerance and Achieved Temperatures
,”
Int. J. Hyperthermia
,
22
(
8
), pp.
673
685
.10.1080/02656730601106037
17.
Gneveckow
,
U.
,
Jordan
,
A.
,
Scholz
,
R.
,
Brüss
,
V.
,
Waldöfner
,
N.
,
Ricke
,
J.
,
Feussner
,
A.
,
Hildebrandt
,
B.
,
Rau
,
B.
, and
Wust
,
P.
,
2004
, “
Description and Characterization of the Novel Hyperthermia and Thermoablation System MFH 300F for Clinical Magnetic Fluid Hyperthermia
,”
Med. Phys.
,
31
(
6
), pp.
1444
1451
.10.1118/1.1748629
18.
Attaluri
,
A.
,
Ma
,
R.
,
Qiu
,
Y.
,
Li
,
W.
, and
Zhu
,
L.
,
2011
, “
Nanoparticle Distribution and Temperature Elevations in Prostatic Tumours in Mice during Magnetic Nanoparticle Hyperthermia
,”
Int. J. Hyperthermia
,
27
(
5
), pp.
491
502
.10.3109/02656736.2011.584856
19.
Bruners
,
P.
,
Braunschweig
,
T.
,
Hodenius
,
M.
,
Pietsch
,
H.
,
Penzkofer
,
T.
,
Baumann
,
M.
,
Günther
,
R.
,
Schmitz-Rode
,
T.
, and
Mahnken
,
A.
,
2010
, “
Thermoablation of Malignant Kidney Tumors Using Magnetic Nanoparticles: An in vivo Feasibility Study in a Rabbit Model
,”
Cardiovasc. Intervent Radiol.
,
13
(
1
), pp.
127
134
.10.1007/s00270-009-9583-x
20.
Johannsen
,
M.
,
Thiesen
,
B.
,
Wust
,
P.
, and
Jordan
,
A.
,
2010
, “
Magnetic Nanoparticle Hyperthermia for Prostate Cancer
,”
Int. J. Hyperthermia
,
26
(
8
), pp.
790
795
.10.3109/02656731003745740
21.
Mamiya
,
H.
, and
Jeyadevan
,
B.
,
2011
, “
Hyperthermic Effects of Dissipative Structures of Magnetic Nanoparticles in Large Alternating Magnetic Fields
,”
Scientific Reports
, Report No. 1, Article No. 157.10.1038/srep00157
22.
Carrey
,
J.
,
Mehdaoui
,
B.
, and
Respaud
,
M.
,
2011
, “
Simple Models for Dynamic Hysteresis Loop Calculations of Magnetic Single-Domain Nanoparticles: Application to Magnetic Hyperthermia Optimization
,”
J. Appl. Phys.
,
109
, p.
083921
.10.1063/1.3551582
23.
Kallumadil
,
M.
,
Tada
,
M.
,
Nakagawa
,
T.
,
Abe
,
M.
,
Southern
,
P.
, and
Pankhurst
,
Q. A.
,
2009
, “
Suitability of Commercial Colloids for Magnetic Hyperthermia
,”
J. Magn. Magn. Mater.
,
321
, pp.
1509
1513
.10.1016/j.jmmm.2009.02.075
24.
Etheridge
,
M. L.
, and
Bischof
,
J. C.
,
2013
, “
Optimizing Magnetic Nanoparticle Based Thermal Therapies Within the Physical Limits of Heating
,”
Ann. Biomed. Eng.
,
41
(
1
), pp.
78
88
.10.1007/s10439-012-0633-1
25.
Huang
,
S.
,
Wang
,
S. Y.
,
Gupta
,
A.
,
Borca-Tasciuc
,
D. A.
, and
Salon
,
S. J.
,
2012
, “
On the Measurement Technique for Specific Absorption Rate of Nanoparticles in an Alternating Electromagnetic Field
,”
Meas. Sci. Technol.
,
23
, p.
035701
.10.1088/0957-0233/23/3/035701
26.
Krishnan
,
K. M.
,
2010
, “
Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy
,”
IEEE Trans. Magn.
,
46
(
7
), pp.
2523
2558
.10.1109/TMAG.2010.2046907
27.
Urtizberea
,
A.
,
Natividad
,
E.
,
Arizaga
,
A.
,
Castro
,
M.
, and
Mediano
,
A.
,
2010
, “
Specific Absorption Rates and Magnetic Properties of Ferrofluids With Interaction Effects at Low Concentrations
,”
J. Phys. Chem. C
,
114
(
11
), pp.
4916
4922
.10.1021/jp912076f
28.
Kashevsky
,
B. E.
,
Kashevsky
,
S.
, and
Prokhorov
,
I.
,
2009
, “
Magnetodynamics and Self-Organization in Strongly Non-Equilibrium Ferrosuspensions
,”
Solid State Phenom.
,
152
, pp.
175
181
.10.4028/www.scientific.net/SSP.152-153.175
29.
Thompson
,
M. T.
,
1998
, “
Simple Models and Measurements of Magnetically Induced Heating Effects in Ferromagnetic Fluids
,”
IEEE Trans. Magn.
,
34
(
5
), pp.
3755
3764
.10.1109/20.718538
30.
Zahn
,
M.
,
1997
, “
Power Dissipation and MagneticForces on MAGLEV Rebars
,”
IEEE Trans. Magn.
,
33
(
2
), pp.
1021
1036
.10.1109/20.558522
31.
Grüttner
,
C.
,
Mueller
,
K.
,
Teller
,
J.
,
Westphal
,
F.
,
Foreman
,
A.
, and
Ivkov
,
R.
,
2007
, “
Synthesis and Antibody Conjugation of Magnetic Nanoparticles With Improved Specific Power Absorption Rates for Alternating Magnetic Field Cancer Therapy
,”
J. Magn. Magn. Mater.
,
311
(
1
), pp.
181
186
.10.1016/j.jmmm.2006.10.1151
32.
Dennis
,
C. L.
,
Jackson
A. J.
,
Borchers
,
J. A.
,
Hoopes
P. J.
,
Strawbridge.
R.
,
Foreman
,
A. R.
,
van Lierop
,
J.
,
Grüttner
,
C.
, and
Ivkov
,
R.
,
2009
, “
Nearly Complete Regression of Tumors Via Collective Behavior of Magnetic Nanoparticles In Hyperthermia
,”
Nanotechnology
,
20
(
39
), p.
395103
.10.1088/0957-4484/20/39/395103
33.
Krycka
,
K. L.
,
Jackson
,
A. J.
,
Borchers
,
J. A.
,
Shih
,
J.
,
Briber
,
R.
,
Ivkov
,
R.
,
Grüttner
,
C.
, and
Dennis
,
C. L.
,
2011
, “
Internal Magnetic Structure of Dextran Coated Magnetite Nanoparticles in Solution Using Small Angle Neutron Scattering With Polarization Analysis
,”
J. Appl. Phys.
,
109
(
7
),
07B513
.10.1063/1.3540589
34.
Dennis
,
C. L.
,
Jackson
,
A. J.
,
Borchers
J. A.
,
Ivkov
,
R.
,
Foreman
,
A. R.
,
Lau
,
J. W.
,
Goernitz
,
E.
, and
Gruettner
,
C.
,
2008
, “
The Influence of Collective Behavior on the Magnetic and Heating Properties of Iron Oxide Nanoparticles
,”
J. Appl. Phys.
,
103
,
07A319
.10.1063/1.2837647
35.
Chen
,
J. F.
,
Wang
,
Y. H.
,
Guo
,
F.
,
Wang
,
X. M.
, and
Zheng
,
C.
,
2000
, “
Synthesis of Nanoparticles With Novel Technology: High-Gravity Reactive Precipitation
,”
Ind. Eng. Chem. Res.
,
39
(
4
), pp.
948
954
.10.1021/ie990549a
You do not currently have access to this content.