Hyperthermia therapy for cancer treatment seeks to destroy tumors through heating alone or combined with other therapies at elevated temperatures between 41.8 and 48 °C. Various forms of cell death including apoptosis and necrosis occur depending on temperature and heating time. Effective tumoricidal effects can also be produced by inducing damage to the tissue vasculature and stroma; however, surrounding normal tissue must be spared to a large extent. Magnetic nanoparticles have been under experimental investigation in recent years as a means to provide a favorable therapeutic ratio for local hyperthermia; however, practical numerical models that can be used to study the underlying mechanisms in realistic geometries have not previously appeared to our knowledge. Useful numerical modeling of these experiments is made extremely difficult by the many orders of magnitude in the geometries: from nanometers to centimeters. What has been missing is a practical numerical modeling approach that can be used to more deeply understand the experiments. We develop and present numerical models that reveal the extent and dominance of the local heat transfer boundary conditions, and provide a new approach that may simplify the numerical problem sufficiently to make ordinary computing machinery capable of generating useful predictions. The objectives of this paper are to place the discussion in a convenient interchangeable classical electromagnetic formulation, and to develop useful engineering approximations to the larger multiscale numerical modeling problem that can potentially be used in experiment evaluation; and eventually, may prove useful in treatment planning. We cast the basic heating mechanisms in the framework of classical electromagnetic field theory and provide calibrating analytical calculations and preliminary experimental results on BNF-Starch® nanoparticles in a mouse tumor model for perspective.

References

References
1.
Cassim
,
S. M.
,
Giustini
,
A. J.
,
Petryk
,
A. A.
,
Strawbridge
,
R. A.
,
Hoopes
,
P. J.
,
2009
, “
Iron Oxide Nanoparticle Hyperthermia and Radiation Cancer Treatment
,”
Proc. SPIE
7181
, Paper No. 71810O.
2.
Johannsen
,
M.
,
Gneveckow
,
U.
,
Eckelt
,
L.
,
Feussner
,
A.
,
Waldofner
,
N.
,
Scholz
,
R.
,
Deger
,
S.
,
Wust
,
P.
,
Loening
,
S. A.
,
Jordan
,
A.
,
2005
, “
Clinical Hyperthermia of Prostate Cancer Using Magnetic Nanoparticles: Presentation of a New Interstitial Technique
,”
Int. J. Hyperthermia
,
21
(
7
), pp.
637
647
.10.1080/02656730500158360
3.
Harris
,
N.
,
Ford
,
M. J.
,
Cortie
,
M. B.
,
2006
, “
Optimization of Plasmonic Heating by Gold Nanospheres and Nanoshells
,”
J. Phys. Chem. B
,
110
(
22
), p.
10701
.10.1021/jp0606208
4.
Gannon
,
C. J.
,
Patra
,
C. R.
,
Bhattacharya
,
R.
,
Mukherjee
,
P.
, and
Curley
,
S. A.
,
2008
, “
Intracellular Gold Nanoparticles Enhance Non-Invasive Radiofrequency Thermal Destruction of Human Gastrointestinal Cancer Cells
,”
J. Nanobiotechnology
,
6
, Paper No. 2.10.1186/1477-3155-6-2
5.
Giustini
,
A. J.
,
Gottesman
,
R. E.
,
Rauwerdink
,
A. M.
,
Petryk
,
A. A.
,
Weaver
,
J. B.
, and
Hoopes
,
P. J.
,
2011
, “
Kinetics and Pathogenesis of Intracellular Iron-Oxide Nanoparticle Hyperthermia
,”
Proc. SPIE
, 7901, Paper No. 790118.
6.
Hoopes
,
P. J.
,
Tate
,
J. A.
,
Ogden
,
J. A.
,
Strawbridge
,
R. R.
,
Fiering
,
S. N.
,
Petryk
,
A. A.
,
Cassim
,
S. M.
,
Giustini
,
A. J.
,
Demidenko
,
E.
,
Ivkov
,
R.
,
Barry
,
S.
,
Chinn
,
P.
, and
Foreman
,
A.
,
2009
, “
Assessment of Intratumor Non-Antibody Directed Iron Oxide Nanoparticle Hyperthermia Cancer Therapy and Antibody Directed IONP Uptake in Murine and Human Cells
,”
Proc. SPIE
7181
, Paper No. 71810P.10.1117/12.812056
7.
Dennis
,
C. L.
,
Jackson
,
A. J.
,
Borchers
,
J. A.
,
Hoopes
,
P. J.
,
Strawbridge
,
R.
,
Foreman
,
A. R.
,
van Lierop
,
J.
,
Grüttner
,
C.
, and
Ivkov
,
R.
,
2009
, “
Nearly Complete Regression of Tumors via Collective Behavior of Magnetic Nanoparticles in Hyperthermia
,”
Nanotechnology
,
20
(
39
), p.
395103
.10.1088/0957-4484/20/39/395103
8.
Hedayati
,
M.
,
Thomas
,
O.
,
Abubaker-Sharif
,
B.
,
Zhou
,
H. M.
,
Cornejo
,
C.
,
Zhang
,
Y.
,
Wabler
,
M.
,
Mihalic
,
J.
,
Gruettner
,
C.
,
Westphal
,
F.
,
Geyh
,
A.
,
Deweese
,
T. L.
, and
Ivkov
,
R.
,
2013
, “
The Effect of Cell Cluster Size on Intracellular Nanoparticle-Mediated Hyperthermia: Is it Possible to Treat Microscopic Tumors?
,”
Nanomedicine
,
8
(
1
), pp.
29
41
.10.2217/nnm.12.98
9.
Gordon
,
R. T.
,
Hines
,
J. R.
, and
Gordon
,
D.
,
1979
, “
Intracellular Hyperthermia: A Biophysical Approach to Cancer Treatment via Intracellular Temperature and Biophysical Alteration
,”
Med. Hypotheses
,
5
, pp.
83
102
.10.1016/0306-9877(79)90063-X
10.
Hilger
,
I.
,
Andra
,
W.
,
Bahring
,
R.
,
Daum
,
A.
,
Hergt
,
R.
, and
Kaiser
,
W. A.
,
1997
, “
Evaluation of Temperature Increase With Different Amounts of Magnetite in Liver Tissue Samples
,”
Invest. Radiol.
,
32
(
11
), pp.
705
712
.10.1097/00004424-199711000-00009
11.
Rabin
,
Y.
,
2002
, “
Is Intracellular Hyperthermia Superior to Extracellular Hyperthermia in the Thermal Sense?
,”
Int. J. Hyperthermia
,
18
(
3
), pp.
194
202
.10.1080/02656730110116713
12.
Giustini
,
A. J.
,
Ivkov
,
R.
, and
Hoopes
,
P. J.
,
2011
, “
Magnetic Nanoparticle Biodistribution Following Intratumoral Administration
,”
Nanotechnology
,
22
(
34
), p.
345101
.10.1088/0957-4484/22/34/345101
13.
Etheridge
,
M. L.
, and
Bischof
,
J. C.
,
2013
, “
Optimizing Magnetic Nanoparticle Based Thermal Therapies Within the Physical Limits of Heating
,”
Ann. Biomed. Eng.
,
41
(
1
), pp.
78
88
.10.1007/s10439-012-0633-1
14.
Bordelon
,
D. E.
,
Cornejo
,
C.
,
Gruttner
,
C.
,
Westphal
,
F.
,
Deweese
,
T. L.
, and
Ivkov
,
R.
,
2011
, “
Magnetic Nanoparticle Heating Efficiency Reveals Magneto-Structural Differences When Characterized With Wide Ranging and High Amplitude Alternating Magnetic Fields
,”
J. Appl. Phys.
,
109
(
12
), p.
124904
.10.1063/1.3597820
15.
Brosseau
,
C.
,
Youssef
,
J. B.
,
Talbot
,
P.
, and
Konn
,
A.-M.
,
2003
, “
Electromagnetic and Magnetic Properties of Multicomponent Metal Oxides Heterostructures: Nanometer Versus Micrometer-Sized Particles
,”
J. Appl. Phys.
,
93
(
11
), pp.
9243
9256
.10.1063/1.1570935
16.
Dennis
,
C. L.
,
Jackson
,
A. J.
,
Borchers
,
J. A.
,
Ivkov
,
R.
,
Foreman
,
A. R.
,
Lau
,
J. W.
,
Goernitz
,
E.
, and
Gruettner
,
C.
,
2008
, “
The Influence of Collective Behavior of the Magnetic and Heating Properties of Iron Oxide Nanoparticles
,”
J. Appl. Phys.
,
103
(
7
), p.
07A319
.10.1063/1.2837647
17.
Hergt
,
R.
,
Andra
,
W.
,
d'Ambly
,
C. G.
,
Hilger
,
I.
,
Kaiser
,
W. A.
,
Richter
,
U.
, and
Schmidt
,
H. G.
,
1998
, “
Physical Limits of Hyperthermia Using Magnetite Fine Particles
,”
IEEE Trans. Magn.
,
34
(
5
), pp.
3745
3754
.10.1109/20.718537
18.
Baker
,
I.
,
Zeng
,
Q.
,
Li
,
W.
, and
Sullivan
,
C. R.
,
2006
, “
Heat Deposition in Iron Oxide and Iron Nanoparticles for Localized Hyperthermia
,”
J. Appl. Phys.
,
99
(
8
), p.
08H106
.10.1063/1.2171960
19.
Rosensweig
,
R. E.
,
2002
, “
Heating Magnetic Fluid With Alternating Magnetic Field
,”
J. Magn. Magn. Mater.
,
252
, pp.
370
374
.10.1016/S0304-8853(02)00706-0
20.
Hergt
,
R.
,
Dutz
,
S.
, and
Zeisberger
,
M.
,
2010
, “
Validity Limits of the N′eel Relaxation Model of Magnetic Nanoparticles for Hyperthermia
,”
Nanotechnology
,
21
, p.
015706
.10.1088/0957-4484/21/1/015706
21.
Pearce
,
J. A.
,
2011
, “
FEM Numerical Model Study of Heating in Magnetic Nanoparticles
,”
Proc. SPIE
7901
, Paper No. 790110.10.1117/12.876338
22.
Atkinson
,
W. J.
,
Brezovich
,
I. A.
, and
Chakraborty
,
D. P.
,
1984
, “
Usable Frequencies in Hyperthermia With Thermal Seeds
,”
IEEE Trans. Biomed. Eng.
,
31
(
1
), pp.
70
75
.10.1109/TBME.1984.325372
You do not currently have access to this content.