Through introducing biodegradable magnesium nanoparticles (Mg-NPs) with excellent property in absorbing laser photon, this paper is dedicated to present a laser scanning based thermogaphic strategy for detecting the skin cancer. It aims at selectively enhancing the thermal responses of the target regions so as to distinguish the tumor from the normal tissues on the infrared images. The carried out three-dimensional simulations and conceptual experiments quantitatively demonstrated the feasibility of the present method in improving the sensitivity and targeting-ability (i.e., specificity) of the thermography. Further parametric studies on the thermal enhanced effects such as by varying the parameters of laser beam (i.e., laser power, action time, and moving frequency) and Mg-NPs (i.e., nanoparticle concentration) disclose more quantitative mechanisms for achieving a better output of the diagnosis. The results indicate the following facts: (1) The parameters could be selected to significantly improve the sensitivity of the thermal detection, such that the maximum temperature difference could even reach 2.31 °C; (2) for safety concern to human body, the default parameter setting (P = 1 W, Δt = 40 ms, f = 1 Hz, n = 0.02 mg/ml) can be a good choice and enhanced results can thus be easily detected; and (3) with the unique biodegradable merits, the Mg-NPs can be considered as an extremely useful agent for enhancing thermogaphy in identifying the early stage tumor.

References

References
1.
Jemal
,
A.
,
Siegel
,
R.
,
Ward
,
E.
,
Hao
,
Y.
,
Xu
,
J.
,
Murray
,
T.
, and
Thun
,
M. J.
,
2008
, “
Cancer Statistics 2008
,”
Ca-Cancer J. Clin.
,
58
(
2
), pp.
71
96
.10.3322/CA.2007.0010
2.
Diepgen
,
T. L.
, and
Mahler
,
V.
,
2002
, “
The Epidemiology of Skin Cancer
,”
Br. J. Dermatol.
,
146
(
1
), pp.
1
6
.10.1046/j.1365-2133.146.s61.2.x
3.
Smith
,
R. A.
,
Cokkinides
,
V.
, and
Eyre
,
H. J.
,
2006
, “
American Cancer Society Guidelines for the Early Detection of Cancer 2006
,”
Ca-Cancer J. Clin.
,
56
(
1
), pp.
11
25
.10.3322/canjclin.56.1.11
4.
Jerant
,
A. F.
,
Johnson
,
J. T.
,
Sheridan
,
C. D.
, and
Caffrey
,
T. J.
,
2000
, “
Early Detection and Treatment of Skin Cancer
,”
Am. Fam. Physician
,
62
(
2
), pp.
357
368
.
5.
Ulrich
,
M.
,
Stockfleth
,
E.
,
Roewert-Huber
,
J.
, and
Astner
,
S.
,
2007
, “
Noninvasive Diagnostic Tools for Nonmelanoma Skin Cancer
,”
Br. J. Dermatol.
,
157
(s
2
), pp.
56
58
.10.1111/j.1365-2133.2007.08275.x
6.
Mogensen
,
M.
, and
Jemec
,
G. B. E.
,
2007
, “
Diagnosis of Nonmelanoma Skin Cancer/Keratinocyte Carcinoma: A Review of Diagnostic Accuracy of Nonmelanoma Skin Cancer Diagnostic Tests and Technologies
,”
Dermatol. Surg.
,
33
(
10
), pp.
1158
1174
.10.1111/j.1524-4725.2007.33251.x
7.
Mogensen
,
M.
,
Joergensen
,
T. M.
,
Nürnberg
,
B. M.
,
Morsy
,
H. A.
,
Thomsen
,
J. B.
,
Thrane
,
L.
, and
Jemec
,
G. B. E.
,
2009
, “
Assessment of Optical Coherence Tomography Imaging in the Diagnosis of Non-Melanoma Skin Cancer and Benign Lesions Versus Normal Skin: Observer-Blinded Evaluation by Dermatologists and Pathologists
,”
Dermatol. Surg.
,
35
(
6
), pp.
965
972
.10.1111/j.1524-4725.2009.01164.x
8.
Paoli
,
J.
,
Smedh
,
M.
,
Wennberg
,
A. M.
, and
Ericson
,
M. B.
,
2007
, “
Multiphoton Laser Scanning Microscopy on Non-Melanoma Skin Cancer: Morphologic Features for Future Non-Invasive Diagnostics
,”
J. Invest Dermatol.
,
128
, pp.
1248
1255
.10.1038/sj.jid.5701139
9.
Mogensen
,
M.
,
Thrane
,
L.
,
Jørgensen
,
T. M.
,
Andersen
,
P. E.
, and
Jemec
,
G. B. E.
,
2009
, “
OCT Imaging of Skin Cancer and Other Dermatological Diseases
,”
J. Biophoton.
,
2
(
6–7
), pp.
442
451
.10.1002/jbio.200910020
10.
Woodward
,
R. M.
,
Wallace
,
V. P.
,
Pye
,
R. J.
,
Cole
,
B. E.
,
Arnone
,
D. D.
,
Linfield
,
E. H.
, and
Pepper
,
M.
,
2003
, “
Terhertz Pulse Imaging of Ex Vivo Basal Cell Carcinoma
,”
J. Invest Dermatol.
,
120
(
1
), pp.
72
78
.10.1046/j.1523-1747.2003.12013.x
11.
Wan
,
S. K.
,
Guo
,
Z.
,
Kumarb
,
S.
,
Aberc
,
J.
, and
Garetzc
,
B. A.
,
2004
, “
Noninvasive Detection of Inhomogeneities in Turbid Media With Time-Resolved Log-Slope Analysis
,”
J. Quant. Spectrosc. Radiative Transfer
,
84
(
4
), pp.
493
500
.10.1016/S0022-4073(03)00266-8
12.
Guo
,
Z.
,
Wan
,
S. K.
,
August
,
D. A.
,
Ying
,
J.
,
Dunn
,
S. M.
, and
Semmlow
,
J. L.
,
2006
, “
Optical Imaging of Breast Tumor Through Temporal Log-Slope Difference Mappings
,”
Comput. Biol. Med.
,
36
(
2
), pp.
209
223
.10.1016/j.compbiomed.2004.09.003
13.
Jiao
,
J.
, and
Guo
,
Z.
,
2009
, “
Thermal Interaction of Short-Pulsed Laser Focused Beams With Skin Tissues
,”
Phys. Med. Biol.
,
54
(
13
), pp.
4225
4241
.10.1088/0031-9155/54/13/017
14.
Jones
,
B. F.
,
1998
, “
A Reappraisal of the Use of Infrared Thermal Image Analysis in Medicine
,”
IEEE Trans. Med. Imaging
,
17
(
6
), pp.
1019
1027
.10.1109/42.746635
15.
Ng
,
E. Y. K.
,
2009
, “
A Review of Thermography as Promising Non-Invasive Detection Modality for Breast Tumor
,”
Int. J. Therm. Sci.
,
48
(
5
), pp.
849
859
.10.1016/j.ijthermalsci.2008.06.015
16.
Kateb
,
B.
,
Yamamoto
,
V.
,
Yu
,
C.
,
Grundfest
,
W.
, and
Gruen
,
J. P.
,
2009
, “
Infrared Thermal Imaging: A Review of the Literature and Case Report
,”
Neuroimage
,
47
(
2
), pp.
154
162
.10.1016/j.neuroimage.2009.03.043
17.
Ohashi
,
Y.
, and
Uchida
,
I.
,
2000
, “
Applying Dynamic Thermography in the Diagnosis of Breast Cancer
,”
IEEE Eng. Med. Biol.
,
19
(
3
), pp.
42
51
.10.1109/51.844379
18.
Carlo
,
A. D.
,
2004
, “
Telethermography With Thermostimulus in the Study of Temporal Arteritis
,”
Infrared Phys. Technol.
,
46
(
1–2
), pp.
57
61
.10.1016/j.infrared.2004.03.008
19.
Hu
,
L.
,
Gupta
,
A.
,
Gore
,
J. P.
, and
Xu
,
L. X.
,
2004
, “
Effect of Forced Convection on the Skin Thermal Expression of Breast Cancer.
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
204
211
.10.1115/1.1688779
20.
Bharara
,
M.
,
Viswanathan
,
V.
, and
Cobb
,
J. E.
,
2008
, “
Cold Immersion Recovery Responses in the Diabetic Foot With Neuropathy
,”
Int. Wound J.
,
5
(
4
), pp.
562
569
.10.1111/j.1742-481X.2008.00454.x
21.
Bharara
,
M.
,
Viswanathan
,
V.
, and
Cobb
,
J. E.
,
2008
, “
Warm Immersion Recovery Test in Assessment of Diabetic Neuropathy—A Proof of Concept Study
,”
Int. Wound J.
,
5
(
4
), pp.
570
576
.10.1111/j.1742-481X.2008.00455.x
22.
Schnell
,
H.
, and
Zaspel
,
J.
,
2008
, “
Cooling Extensive Burns: Sprayed Coolants can Improve Initial Cooling Management: A Thermography-Based Study
,”
Burns
,
34
(
4
), pp.
505
508
.10.1016/j.burns.2007.06.012
23.
Çetingül
,
M. P.
, and
Herman
,
C.
,
2011
, “
Quantification of the Thermal Signature of a Melanoma Lesion
,”
Int. J. Therm. Sci.
,
50
(
4
), pp.
421
431
.10.1016/j.ijthermalsci.2010.10.019
24.
Çetingül
,
M. P.
, and
Herman
,
C.
,
2011
, “
The Assessment of Melanoma Risk Using the Dynamic Infrared Imaging Technique
,”
ASME J. Thermal Sci. Eng. Appl.
,
3
(
3
), p.
031006
.10.1115/1.4004424
25.
Weissleder
,
R.
, and
Pittet
,
M. J.
,
2008
, “
Imaging in the Era of Molecular Oncology
,”
Nature
,
452
(
7187
), pp.
580
589
.10.1038/nature06917
26.
Corot
,
C.
,
Robert
,
P.
,
Idée
,
J. M.
, and
Port
,
M.
,
2006
, “
Recent Advances in Iron Oxide Nanocrystal Technology for Medical Imaging
,”
Adv. Drug Delivery Rev.
,
58
(
14
), pp.
1471
1504
.10.1016/j.addr.2006.09.013
27.
Yan
,
J. F.
, and
Liu
,
J.
,
2008
, “
Nanocryosurgery and Its Mechanisms for Enhancing Freezing Efficiency of Tumor Tissues
,”
Nanomedicine
,
4
(
1
), pp.
79
87
.10.1016/j.nano.2007.11.002
28.
O'Neal
,
D. P.
,
Hirsch
,
L. R.
,
Halas
,
N. J.
,
Payne
,
J. D.
, and
West
,
J. L.
,
2004
, “
Photo-Thermal Tumor Ablation in Mice Using Near Infrared-Absorbing Nanoparticles
,”
Cancer Lett.
,
209
(
2
), pp.
171
176
.10.1016/j.canlet.2004.02.004
29.
Levy
,
A.
,
Dayan
,
A.
,
Ben-David
,
M.
, and
Gannot
,
I.
,
2010
, “
A New Thermography-Based Approach to Early Detection of Cancer Utilizing Magnetic Nanoparticles Theory Simulation and In Vitro Validation
,”
Nanomedicine
,
6
(
6
), pp.
786
796
.10.1016/j.nano.2010.06.007
30.
Jakobsohn
,
K.
,
Motiei
,
M.
,
Sinvani
,
M.
, and
Popovtzer
,
R.
,
2012
, “
Towards Real-Time Detection of Tumor Margins Using Photothermal Imaging of Immune-Targeted Gold Nanoparticles
,”
Int. J. Nanomed.
,
7
, pp.
4707
4713
.10.2147/IJN.S34157
31.
Pan
,
Y.
,
Leifert
,
A.
,
Ruau
,
D.
,
Neuss
,
S.
,
Bornemann
,
J.
,
Schmid
,
G.
,
Brandau
,
W.
,
Simon
,
U.
, and
Jahnen-Dechent
,
W.
,
2009
, “
Gold Nanoparticles of Diameter 1.4 nm Trigger Necrosis by Oxidative Stress and Mitochondrial Damage
,”
Small
,
5
(
18
), pp.
2067
2076
.10.1002/smll.200900466
32.
Ma
,
P.
,
Luo
,
Q.
,
Chen
,
J. E.
,
Gan
,
Y. P.
,
Du
,
J.
,
Ding
,
S. M.
,
Xi
,
Z. G.
, and
Yang
,
X.
,
2012
, “
Intraperitoneal Injection of Magnetic Fe3O4-Nanoparticle Induces Hepatic and Renal Tissue Injury via Oxidative Stress in Mice
,”
Int. J. Nanomedicine
,
7
, pp.
4809
4818
.10.2147/IJN.S34349
33.
Di
,
D. R.
,
He
,
Z. Z.
,
Sun
,
Z. Q.
, and
Liu
,
J.
,
2012
, “
A New Nano-Cryosurgical Modality for Tumor Treatment Using Biodegradable MgO Nanoparticles
,”
Nanomedicine
,
8
, pp.
1233
1241
.10.1016/j.nano.2012.02.010
34.
Wang
,
Q.
,
Xie
,
L. P.
,
He
,
Z. Z.
,
Di
,
D. R.
, and
Liu
,
J.
,
2012
, “
Biodegradable Magnesium Nanoparticle-Enhanced Laser Hyperthermia Therapy
,”
Int. J. Nanomed.
,
7
, pp.
4715
4725
.10.2147/IJN.S34902
35.
Dai
,
T.
,
Pikkula
,
B. M.
,
Wang
,
L. V.
, and
Anvari
,
B.
,
2004
, “
Comparison of Human Skin Opto-Thermal Response to Near-Infrared and Visible Laser Irradiations: A Theoretical Investigation
,”
Phys. Med. Biol.
,
49
(
21
), pp.
4861
4877
.10.1088/0031-9155/49/21/002
36.
Niemz
,
M.
,
2002
,
Laser-Tissue Interactions: Fundamentals and Applications
,
Springer
,
Berlin
.
37.
Wang
,
L. H.
, and
Jacques
,
S. L.
,
1995
, “
Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Standard C
,” University of Texas M. D. Anderson Cancer Center, http://labs.seas.wustl.edu/bme/Wang/mcr5/Mcman.pdf
38.
Wang
,
L.
,
Jacques
,
S. L.
, and
Zheng
,
L.
,
1995
, “
MCML—Monte Carlo Modeling of Light Transport in Multi-Layered Tissues
,”
Comput. Methods Programs Biomed.
,
47
(
2
), pp.
131
146
.10.1016/0169-2607(95)01640-F
39.
Guo
,
Z.
,
Kumar
,
S.
, and
San
,
K. C.
,
2000
, “
Multidimensional Monte Carlo Simulation of Short-Pulse Laser Transport in Scattering Media
,”
J. Thermophys. Heat Transfer
,
14
(
4
), pp.
504
511
.10.2514/2.6573
40.
Zhou
,
J. H.
, and
Liu
,
J.
,
2004
, “
Numerical Study on 3-D Light and Heat Transport in Biological Tissues Embedded With Large Blood Vessels During Laser-Induced Thermotherapy
,”
Numer. Heat Transfer
, Part A,
45
(
5
), pp.
415
449
.10.1080/10407780490269030
41.
Pennes
,
H. H.
,
1998
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
85
(
1
), pp.
5
34
.
42.
Livne
,
E.
, and
Glasner
,
A.
,
1985
, “
A Finite Difference Scheme for the Heat Conduction Equation
,”
J. Comput. Phys.
,
58
(
1
), pp.
59
66
.10.1016/0021-9991(85)90156-1
43.
Jacques
,
S. L.
,
1998
, “
Skin Optics
,” Oregon Medical Laser Center News, http://omlc.ogi.edu/news/jan98/skinoptics.html
44.
Prahl
,
S.
,
1999
, “
Optical Absorption of Hemoglobin
,” Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/hemoglobin/index.html
45.
He
,
B. H.
,
Wang
,
J.
, and
Li
,
L. B.
,
2008
, “
Characteristic of Absorption Coefficient Spectrum and Scattering Coefficient Spectrum for Human Gastric Adenocarcinoma
,”
Acta Med. Univ. Sci. Technol. Huazhong
,
37
(
6
), pp.
795
797
(in Chinese).
46.
Çetingül
,
M. P.
, and
Herman
,
C.
,
2010
, “
A Heat Transfer Model of Skin Tissue for the Detection of Lesions: Sensitivity Analysis
,”
Phys. Med. Biol.
,
55
(
19
), pp.
5933
5951
.10.1088/0031-9155/55/19/020
47.
Cubeddu
,
R.
,
Pifferi
,
A.
,
Taroni
,
P.
,
Torricelli
,
A.
, and
Valentini
,
G.
,
1997
, “
A Solid Tissue Phantom for Photon Migration Studies
,”
Phys. Med. Biol.
,
42
(
10
), pp.
1971
1979
.10.1088/0031-9155/42/10/011
You do not currently have access to this content.