Nanogels (NG) hold great promise as a drug delivery platform. In this work, we examine the potential of lysozyme-dextran nanogels (LDNG) as drug carriers in vitro using two cell lines: a model target tissue, human umbilical cord vein endothelial cells (HUVEC) and a model of the mononuclear phagocyte system (phorbol 12-myristate 13-acetate (PMA)-stimulated THP-1 cells). The LDNG (∼100 nm) were prepared with rhodamine-label dextran (LRDNG) via Maillard reaction followed by heat-gelation reaction and were loaded with a fluorescent probe, 5-hexadecanoylaminofluorescein (HAF), as a mock drug. Epifluorescence microscopy confirmed rapid uptake of LRDNG by HUVEC. Although LysoTracker Green staining indicated a lysosomal fate for LRDNG, the mock drug cargo (HAF) diffused extensively inside the cell within 15 min. Flow cytometry and confocal microscopy indicated slow uptake of LRDNG in PMA-stimulated THP-1 cells, with only 41% of cells containing LRDNG after 24 h exposure. Finally, 24 h exposure to LRDNG did not affect the viability of either cell type at the dose studied (20 μg/ml). At a higher dose (200 μg/ml), LRDNG resulted in a marked loss of viability of HUVEC and THP-1, measuring 30% and 38%, respectively. Collectively, our results demonstrate the great potential of LRDNG as a drug delivery platform, combining simple production, rapid uptake and cargo release in target cells with “stealth” properties and low cytotoxicity.

References

References
1.
Oh
,
J. K.
,
Drumright
,
R.
,
Siegwart
,
D. J.
, and
Matyjaszewski
,
K.
,
2008
, “
The Development of Microgels/Nanogels for Drug Delivery Applications
,”
Prog. Polym. Sci.
,
33
(
4
), pp.
448
477
.10.1016/j.progpolymsci.2008.01.002
2.
Raemdonck
,
K.
,
Demeester
,
J.
, and
De Smedt
,
S.
,
2009
, “
Advanced Nanogel Engineering for Drug Delivery
,”
Soft Matter
,
5
(
4
), pp.
707
715
.10.1039/b811923f
3.
Kuckling
,
D.
,
Vo
,
C. D.
, and
Wohlrab
,
S. E.
,
2002
, “
Preparation of Nanogels With Temperature-Responsive Core and pH-Responsive Arms by Photo-Cross-Linking
,”
Langmuir
,
18
(
11
), pp.
4263
4269
.10.1021/la015758q
4.
Li
,
X.
,
Zuo
,
J.
,
Guo
,
Y. L.
, and
Yuan
,
X. H.
,
2004
, “
Preparation and Characterization of Narrowly Distributed Nanogels With Temperature-Responsive Core and pH-Responsive Shell
,”
Macromolecules
,
37
(
26
), pp.
10042
10046
.10.1021/ma048658a
5.
Lemarchand
,
C.
,
Gref
,
R.
, and
Couvreur
,
P.
,
2004
, “
Polysaccharide-Decorated Nanoparticles
,”
Eur. J. Pharm. Biopharm.
,
58
(
2
), pp.
327
341
.10.1016/j.ejpb.2004.02.016
6.
Mitra
,
S.
,
Gaur
,
U.
,
Ghosh
,
P. C.
, and
Maitra
,
A. N.
,
2001
, “
Tumour Targeted Delivery of Encapsulated Dextran-Doxorubicin Conjugate Using Chitosan Nanoparticles as Carrier
,”
J. Controlled Release
,
74
(
1–3
), pp.
317
323
.10.1016/S0168-3659(01)00342-X
7.
Li
,
J.
,
Yu
,
S. Y.
,
Yao
,
P.
, and
Jiang
,
M.
,
2008
, “
Lysozyme-Dextran Core-Shell Nanogels Prepared Via a Green Process
,”
Langmuir
,
24
(
7
), pp.
3486
3492
.10.1021/la702785b
8.
Nagahama
,
K.
,
Ouchi
,
T.
, and
Ohya
,
Y.
,
2008
, “
Biodegradable Nanogels Prepared by Self-Assembly of Poly(L-Lactide)-Grafted Dextran: Entrapment and Release of Proteins
,”
Macromol. Biosci.
,
8
(
11
), pp.
1044
1052
.10.1002/mabi.200800175
9.
Li
,
J.
, and
Yao
,
P.
,
2009
, “
Self-Assembly of Ibuprofen and Bovine Serum Albumin-Dextran Conjugates Leading to Effective Loading of the Drug
,”
Langmuir
,
25
(
11
), pp.
6385
6391
.10.1021/la804288u
10.
Jeong
,
Y. I.
,
Choi
,
K. C.
, and
Song
,
C. E.
,
2006
, “
Doxorubicin Release From Core-Shell Type Nanoparticles of Poly(Dl-Lactide-Co-Glycolide)-Grafted Dextran
,”
Arch. Pharmacal Res.
,
29
(
8
), pp.
712
719
.10.1007/BF02968257
11.
Pan
,
X. Y.
,
Yao
,
P.
, and
Jiang
,
M.
,
2007
, “
Simultaneous Nanoparticle Formation and Encapsulation Driven by Hydrophobic Interaction of Casein-Graft-Dextran and Beta-Carotene
,”
J. Colloid Interface Sci.
,
315
(
2
), pp.
456
463
.10.1016/j.jcis.2007.07.015
12.
Jung
,
S. W.
,
Jeong
,
Y. I.
,
Kim
,
Y. H.
,
Choi
,
K. C.
, and
Kim
,
S. H.
,
2005
, “
Drug Release From Core-Shell Type Nanoparticles of Poly(Dl-Lactide-Co-Glycolide)-Grafted Dextran
,”
J. Microencapsul.
,
22
(
8
), pp.
901
911
.10.1080/02652040500286060
13.
Lemarchand
,
C.
,
Gref
,
R.
,
Passirani
,
C.
,
Garcion
,
E.
,
Petri
,
B.
,
Muller
,
R.
,
Costantini
,
D.
, and
Couvreur
,
P.
,
2006
, “
Influence of Polysaccharide Coating on the Interactions of Nanoparticles With Biological Systems
,”
Biomaterials
,
27
(
1
), pp.
108
118
.10.1016/j.biomaterials.2005.04.041
14.
Stutman
,
D. R.
,
Klein
,
A.
,
Elaasser
,
M. S.
, and
Vanderhoff
,
J. W.
,
1985
, “
Mechanism of Core Shell Emulsion Polymerization
,”
Ind. Eng. Chem. Prod. Res. Dev.
,
24
(
3
), pp.
404
412
.10.1021/i300019a014
15.
Blackburn
,
W. H.
, and
Lyon
,
L. A.
,
2008
, “
Size-Controlled Synthesis of Monodisperse Core/Shell Nanogels
,”
Colloid Polym. Sci.
,
286
(
5
), pp.
563
569
.10.1007/s00396-007-1805-7
16.
Jin
,
Q.
,
Liu
,
X.
,
Liu
,
G.
, and
Ji
,
J.
,
2010
, “
Fabrication of Core or Shell Reversibly Photo Cross-Linked Micelles and Nanogels From Double Responsive Water-Soluble Block Copolymers
,”
Polymer
,
51
(
6
), pp.
1311
1319
.10.1016/j.polymer.2010.01.026
17.
Qi
,
J. N.
,
Yao
,
P.
,
He
,
F.
,
Yu
,
C. L.
, and
Huang
,
C. O.
,
2010
, “
Nanoparticles With Dextran/Chitosan Shell and BSA/Chitosan Core-Doxorubicin Loading and Delivery
,”
Int. J. Pharm.
,
393
(
1–2
), pp.
176
184
.10.1016/j.ijpharm.2010.03.063
18.
Deng
,
W.
,
Li
,
J.
,
Yao
,
P.
,
He
,
F.
, and
Huang
,
C.
,
2010
, “
Green Preparation Process, Characterization and Antitumor Effects of Doxorubicin-BSA-Dextran Nanoparticles
,”
Macromol. Biosci.
,
10
(
10
), pp.
1224
1234
.10.1002/mabi.201000125
19.
Lee
,
H.-S.
,
Stachelek
,
S. J.
,
Tomczyk
,
N.
,
Finley
,
M. J.
,
Composto
,
R. J.
, and
Eckmann
,
D. M.
,
2013
, “
Correlating Macrophage Morphology and Cytokine Production Resulting From Biomaterial Contact
,”
J. Biomed. Mater. Res. Part A
,
101A
(
1
), pp.
203
212
.10.1002/jbm.a.34309
20.
Coll Ferrer
,
M. C.
,
Ferrier
,
R. C.
, Jr.
,
Eckmann
,
D. M.
, and
Composto
,
R. J.
, “
A Facile Route to Synthesize Nanogels Doped With Silver Nanoparticles
,”
J. Nanopart. Res.
, (in press).10.1007/s11051-012-1323-5
21.
Costes
,
S. V.
,
Daelemans
,
D.
,
Cho
,
E. H.
,
Dobbin
,
Z.
,
Pavlakis
,
G.
, and
Lockett
,
S.
,
2004
, “
Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells
,”
Biophys. J.
,
86
(
6
), pp.
3993
4003
.10.1529/biophysj.103.038422
22.
Shi
,
J.
,
Votruba
,
A. R.
,
Farokhzad
,
O. C.
, and
Langer
,
R.
,
2010
, “
Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications
,”
Nano Lett.
,
10
(
9
), pp.
3223
3230
.10.1021/nl102184c
23.
Oakenfull
,
D.
,
Pearce
,
J.
, and
Burley
,
R.
,
1997
,
Food Proteins and Their Applications
, Vol.
80
,
Marcel Dekker
,
New York
, pp.
111
142
.
24.
Ibrahim
,
H. R.
,
Higashiguchi
,
S.
,
Juneja
,
L. R.
,
Kim
,
M.
, and
Yamamoto
,
T.
,
1996
, “
A Structural Phase of Heat-Denatured Lysozyme With Novel Antimicrobial Action
,”
J. Agric. Food Chem.
,
44
(
6
), pp.
1416
1423
.10.1021/jf9507147
25.
Coll Ferrer
,
M. C.
,
Yang
,
S.
,
Eckmann
,
D. M.
, and
Composto
,
R. J.
,
2010
, “
Creating Biomimetic Polymeric Surfaces by Photochemical Attachment and Patterning of Dextran
,”
Langmuir
,
26
(
17
), pp.
14126
14134
.10.1021/la102315j
26.
Ombelli
,
M.
,
Composto
,
R. J.
,
Meng
,
Q. C.
, and
Eckmann
,
D. M.
,
2005
, “
A Quantitative and Selective Chromatography Method for Determining Coverages of Multiple Proteins on Surfaces
,”
J. Chromatogr., B-Anal. Technol. Biomed. Life Sci.
,
826
(
1–2
), pp.
198
205
.10.1016/j.jchromb.2005.09.002
27.
Frazier
,
R. A.
,
Matthijs
,
G.
,
Davies
,
M. C.
,
Roberts
,
C. J.
,
Schacht
,
E.
, and
Tendler
,
S. J. B.
,
2000
, “
Characterization of Protein-Resistant Dextran Monolayers
,”
Biomaterials
,
21
(
9
), pp.
957
966
.10.1016/S0142-9612(99)00270-7
28.
Martwiset
,
S.
,
Koh
,
A. E.
, and
Chen
,
W.
,
2006
, “
Nonfouling Characteristics of Dextran-Containing Surfaces
,”
Langmuir
,
22
(
19
), pp.
8192
8196
.10.1021/la061064b
29.
Piehler
,
J.
,
Brecht
,
A.
,
Hehl
,
K.
, and
Gauglitz
,
G.
,
1999
, “
Protein Interactions in Covalently Attached Dextran Layers
,”
Colloids Surf.
, B,
13
(
6
), pp.
325
336
.10.1016/S0927-7765(99)00046-6
30.
Passirani
,
C.
,
Barratt
,
G.
,
Devissaguet
,
J. P.
, and
Labarre
,
D.
,
1998
, “
Interactions of Nanoparticles Bearing Heparin or Dextran Covalently Bound to Poly(Methyl Methacrylate) With the Complement System
,”
Life Sci.
,
62
(
8
), pp.
775
785
.10.1016/S0024-3205(97)01175-2
31.
Cansell
,
M.
,
Parisel
,
C.
,
Jozefonvicz
,
J.
, and
Letourneur
,
D.
,
1999
, “
Liposomes Coated With Chemically Modified Dextran Interact With Human Endothelial Cells
,”
J. Biomed. Mater. Res.
,
44
(
2
), pp.
140
148
.10.1002/(SICI)1097-4636(199902)44:2<140::AID-JBM3>3.0.CO;2-5
32.
Letourneur
,
D.
,
Parisel
,
C.
,
Prigent-Richard
,
S.
, and
Cansell
,
M.
,
2000
, “
Interactions of Functionalized Dextran-Coated Liposomes With Vascular Smooth Muscle Cells
,”
J. Controlled Release
,
65
(
1–2
), pp.
83
91
.10.1016/S0168-3659(99)00240-0
33.
Ning
,
S.
,
Huang
,
Q.
,
Li
,
J.
,
Zhang
,
Y.
, and
Liu
,
Y.-N.
,
2011
, “
Functionalized Dextran-Coated Liposomes for Doxorubicin Loading
,”
J. Controlled Release
,
152
, pp.
E49
E51
.10.1016/j.jconrel.2011.08.115
34.
Du
,
Y.-Z.
,
Weng
,
Q.
,
Yuan
,
H.
, and
Hu
,
F.-Q.
,
2011
, “
Synthesis and Antitumor Activity of Stearate-G-Dextran Micelles for Intracellular Doxorubicin Delivery
,”
ACS Nano
,
4
(
11
), pp.
6894
6902
.10.1021/nn100927t
35.
Sun
,
H.
,
Guo
,
B.
,
Li
,
X.
,
Cheng
,
R.
,
Meng
,
F.
,
Liu
,
H.
, and
Zhong
,
Z.
,
2011
, “
Shell-Sheddable Micelles Based on Dextran-Ss-Poly(Epsilon-Caprolactone) Diblock Copolymer for Efficient Intracellular Release of Doxorubicin
,”
Biomacromolecules
,
11
(
4
), pp.
848
854
.10.1021/bm1001069
36.
Choi
,
K.-C.
,
Bang
,
J.-Y.
,
Kim
,
P.-I.
,
Kim
,
C.
, and
Song
,
C.-E.
,
2008
, “
Amphotericin B-Incorporated Polymeric Micelles Composed of Poly(D,L-Lactide-Co-Glycolide)/Dextran Graft Copolymer
,”
Int. J. Pharm.
,
355
(
1–2
), pp.
224
230
.10.1016/j.ijpharm.2007.12.011
37.
Van Thienen
,
T. G.
,
Raemdonck
,
K.
,
Demeester
,
J.
, and
De Smedt
,
S. C.
,
2007
, “
Protein Release From Biodegradable Dextran Nanogels
,”
Langmuir
,
23
(
19
), pp.
9794
9801
.10.1021/la700736v
38.
Patnaik
,
S.
,
Sharma
,
A. K.
,
Garg
,
B. S.
,
Gandhi
,
R. P.
, and
Gupta
,
K. C.
,
2007
, “
Photoregulation of Drug Release in Azo-Dextran Nanogels
,”
Int. J. Pharm.
,
342
(
1–2
), pp.
184
193
.10.1016/j.ijpharm.2007.04.038
39.
Genz
,
A. K.
,
Engelhardt
,
W.
, and
Busche
,
R.
,
1999
, “
Maintenance and Regulation of the pH Microclimate at the Luminal Surface of the Distal Colon of Guinea-Pig
,”
J. Physiol.
,
517
(
2
), pp.
507
519
.10.1111/j.1469-7793.1999.0507t.x
40.
Tournier
,
J. F.
,
Lopez
,
A.
, and
Tocanne
,
J. F.
,
1989
, “
Effect of Cell Substratum on Lateral Mobility of Lipids in the Plasma-Membrane of Vascular Endothelial Cells
,”
Exp. Cell Res.
,
181
(
1
), pp.
105
115
.10.1016/0014-4827(89)90186-9
41.
Nachman
,
R. L.
, and
Jaffe
,
E. A.
,
2004
, “
Endothelial Cell Culture: Beginnings of Modern Vascular Biology
,”
J. Clin. Invest.
,
114
(
8
), pp.
1037
1040
.10.1172/JCI200423284
42.
Dobrovolskaia
,
M. A.
,
Aggarwal
,
P.
,
Hall
,
J. B.
, and
McNeil
,
S. E.
,
2008
, “
Preclinical Studies to Understand Nanoparticle Interaction With the Immune System and Its Potential Effects on Nanoparticle Biodistribution
,”
Mol. Pharm.
,
5
(
4
), pp.
487
495
.10.1021/mp800032f
43.
Tsuchiya
,
S.
,
Kobayashi
,
Y.
,
Goto
,
Y.
,
Okumura
,
H.
,
Nakae
,
S.
,
Konno
,
T.
, and
Tada
,
K.
,
1982
, “
Induction of Maturation in Cultured Human Monocytic Leukemia-Cells by a Phorbol Diester
,”
Cancer Res.
,
42
(
4
), pp.
1530
1536
.
44.
Sahay
,
G.
,
Alakhova
,
D. Y.
, and
Kabanov
,
A. V.
, “
Endocytosis of Nanomedicines
,”
J. Controlled Release
,
145
(
3
), pp.
182
195
.10.1016/j.jconrel.2010.01.036
45.
Massia
,
S. P.
, and
Stark
,
J.
,
2001
, “
Immobilized RGD Peptides on Surface-Grafted Dextran Promote Biospecific Cell Attachment
,”
J. Biomed. Mater. Res.
,
56
(
3
), pp.
390
399
.10.1002/1097-4636(20010905)56:3<390::AID-JBM1108>3.0.CO;2-L
You do not currently have access to this content.