This review discusses current progress and future challenges in the numerical modeling of targeted drug delivery using functionalized nanocarriers (NC). Antibody coated nanocarriers of various size and shapes, also called functionalized nanocarriers, are designed to be injected in the vasculature, whereby they undergo translational and rotational motion governed by hydrodynamic interaction with blood particulates as well as adhesive interactions mediated by the surface antibody binding to target antigens/receptors on cell surfaces. We review current multiscale modeling approaches rooted in computational fluid dynamics and nonequilibrium statistical mechanics to accurately resolve fluid, thermal, as well as adhesive interactions governing nanocarrier motion and their binding to endothelial cells lining the vasculature. We also outline current challenges and unresolved issues surrounding the modeling methods. Experimental approaches in pharmacology and bioengineering are discussed briefly from the perspective of model validation.

References

References
1.
Liu
,
J.
,
Bradley
,
R.
,
Eckmann
,
D. M.
,
Ayyaswamy
,
P. S.
, and
Radhakrishnan
,
R.
,
2011
, “
Multiscale Modeling of Functionalized Nanocarriers in Targeted Drug Delivery
,”
Curr. Nanosci.
,
7
(
5
), pp.
727
735
.10.2174/157341311797483826
2.
Muzykantov
,
V.
,
Radhakrishnan
,
R.
, and
Eckmann
,
D. M.
,
2012
, “
Dynamic Factors Controlling Targeting Nanocarriers to Vascular Endothelium
,”
Curr. Drug Metabolism
,
113
, pp.
70
81
.10.2174/138920012798356916
3.
Khademhosseini
,
A.
, and
Langer
,
R.
,
2006
, “
Nanobiotechnology Drug Delivery and Tissue Engineering Drug Delivery and Tissue Engineering
,”
Chem. Eng. Progr.
,
102
(
2
), pp.
38
42
.
4.
Swaminathan
,
T. N.
,
Liu
,
J.
,
Balakrishnan
,
U.
,
Ayyaswamy
,
P. S.
,
Radhakrishnan
,
R.
, and
Eckmann
,
D. M.
,
2011
, “
Dynamic Factors Controlling Carrier Anchoring on Vascular Cells
,”
IUBMB Life
,
63
(
8
), pp.
640
647
.10.1002/iub.475
5.
Danilov
,
S. M.
,
Gavrilyuk
,
V. D.
,
Franke
,
F. E.
,
Pauls
,
K.
,
Harshaw
,
D. W.
,
McDonald
,
T. D.
,
Miletich
,
D. J.
, and
Muzykantov
,
V. R.
,
2001
, “
Lung Uptake of Antibodies to Endothelial Antigens: Key Determinants of Vascular Immunotargeting
,”
Am. J. Physiol. Lung Cell Mol. Physiol.
,
280
(
6
), pp.
L1335
L1347
.
6.
Ding
,
B. S.
,
Hong
,
N.
,
Christofidou-Solomidou
,
M.
,
Gottstein
,
C.
,
Albelda
,
S. M.
,
Cines
,
D. B.
,
Fisher
,
A. B.
, and
Muzykantov
,
V. R.
,
2009
, “
Anchoring Fusion Thrombomodulin to the Endothelial Lumen Protects Against Injury-Induced Lung Thrombosis and Inflammation
,”
Am. J. Respir. Crit. Care Med.
,
180
(
3
), pp.
247
256
.10.1164/rccm.200809-1433OC
7.
Eniola
,
A. O.
,
Krasik
,
E. F.
,
Smith
,
L. A.
,
Song
,
G.
, and
Hammer
,
D. A.
,
2005
, “
I-Domain of Lymphocyte Function-Associated Antigen-1 Mediates Rolling of Polystyrene Particles on ICAM-1 Under Flow
,”
Biophys. J.
,
89
(
5
), pp.
3577
3588
.10.1529/biophysj.104.057729
8.
Molema
,
G.
,
2002
, “
Tumor Vasculature Directed Drug Targeting: Applying New Technologies and Knowledge to the Development of Clinically Relevant Therapies
,”
Pharm. Res.
,
19
(
9
), pp.
1251
1258
.10.1023/A:1020312220968
9.
Torchilin
,
V. P.
,
2000
, “
Drug Targeting
,”
Eur. J. Pharm. Sci.
,
11
(
2
), pp.
S81
S91
.10.1016/S0928-0987(00)00166-4
10.
Chittasupho
,
C.
,
Xie
,
S. X.
,
Baoum
,
A.
,
Yakovleva
,
T.
,
Siahaan
,
T. J.
, and
Berkland
,
C. J.
,
2009
, “
ICAM-1 Targeting of Doxorubicin-Loaded PLGA Nanoparticles to Lung Epithelial Cells
,”
Eur. J. Pharm. Sci.
,
37
(
2
), pp.
141
150
.10.1016/j.ejps.2009.02.008
11.
Davda
,
J.
, and
Labhasetwar
,
V.
,
2002
, “
Characterization of Nanoparticle Uptake by Endothelial Cells
,”
Int. J. Pharm.
,
233
(
1–2
), pp.
51
59
.10.1016/S0378-5173(01)00923-1
12.
Hossen
,
N.
,
Kajimoto
,
K.
,
Akita
,
H.
,
Hyodo
,
M.
,
Ishitsuka
,
T.
, and
Harashima
,
H.
,
2010
, “
Ligand-Based Targeted Delivery of a Peptide Modified Nanocarrier to Endothelial Cells in Adipose Tissue
,”
J. Controlled Release
,
147
(
2
), pp.
261
268
.10.1016/j.jconrel.2010.07.100
13.
Muro
,
S.
,
Garnacho
,
C.
,
Champion
,
J. A.
,
Leferovich
,
J.
,
Gajewski
,
C.
,
Schuchman
,
E. H.
,
Mitragotri
,
S.
, and
Muzykantov
,
V. R.
,
2008
, “
Control of Endothelial Targeting and Intracellular Delivery of Therapeutic Enzymes by Modulating the Size and Shape of ICAM-1-Targeted Carriers
,”
Mol. Ther.
,
16
(
8
), pp.
1450
1458
.10.1038/mt.2008.127
14.
Elias
,
D. R.
,
Poloukhtine
,
A.
,
Popik
,
V.
, and
Tsourkas
,
A.
,
2013
, “
Effect of Ligand Density, Receptor Density, and Nanoparticle Size on Cell Targeting
,”
Nanomed.: Nanotech., Bio., Med.
,
9
(
2
), pp.
194
201
.10.1016/j.nano.2012.05.015
15.
Ding
,
B. S.
,
Dziubla
,
T.
,
Shuvaev
,
V. V.
,
Muro
,
S.
, and
Muzykantov
,
V. R.
,
2006
, “
Advanced Drug Delivery Systems That Target the Vascular Endothelium
,”
Mol. Interventions
,
6
, pp.
98
112
.10.1124/mi.6.2.7
16.
Muzykantov
,
V.
,
2005
, “
Biomedical Aspects of Targeted Delivery of Drugs to Pulmonary Endothelium
,”
Expert Opin. Drug Delivery
,
2
, pp.
909
926
.10.1517/17425247.2.5.909
17.
Gosk
,
S.
,
Moos
,
T.
,
Gottstein
,
C.
, and
Bendas
,
G.
,
2008
, “
VCAM-1 Directed Immunoliposomes Selectively Target Tumor Vasculature In Vivo
,”
Biochim. Biophys. Acta
,
1778
(
4
), pp.
854
863
.10.1016/j.bbamem.2007.12.021
18.
Calderon
,
A.
,
Muzykantov
,
V.
,
Muro
,
S.
, and
Eckmann
,
D. M.
,
2009
, “
Flow Dynamics, Binding and Detachment of Spherical Carriers Targeted to ICAM-1 on Endothelial Cells
,”
Biorheology
,
46
, pp.
323
341
.10.3233/BIR-2009-0544
19.
Haun
,
J. B.
, and
Hammer
,
D. A.
,
2008
, “
Quantifying Nanoparticle Adhesion Mediated by Specific Molecular Interactions
,”
Langmuir
,
24
(
16
), pp.
8821
8832
.10.1021/la8005844
20.
Decuzzi
,
P.
, and
Ferrari
,
M.
,
2008
, “
Design Maps for Nanoparticles Targeting the Diseased Microvasculature
,”
Biomaterials
,
29
(
3
), pp.
377
384
.10.1016/j.biomaterials.2007.09.025
21.
Shmeeda
,
H.
,
Tzernach
,
D.
,
Mak
,
L.
, and
Gabizon
,
A.
,
2009
, “
Her2-Targeted Pegylated Liposomal Doxorubicin: Retention of Target-Specific Binding and Cytotoxicity After In Vivo Passage
,”
J. Controlled Release
,
136
(
2
), pp.
155
160
.10.1016/j.jconrel.2009.02.002
22.
Torchilin
,
V. P.
,
Levchenko
,
T. S.
,
Lukyanov
,
A. N.
,
Khaw
,
B. A.
,
Klibanov
,
A. L.
,
Rammohan
,
R.
,
Samokhin
,
G. P.
, and
Whiteman
,
K. R.
,
2001
, “
p-Nitrophenylcarbonyl-PEG-PE-Liposomes: Fast and Simple Attachment of Specific Ligands, Including Monoclonal Antibodies, to Distal Ends of PEG Chains via p-Nitrophenylcarbonyl Groups
,”
Biochim. Biophys. Acta
,
1511
(
2
), pp.
397
411
.10.1016/S0005-2728(01)00165-7
23.
Kabanov
,
A. V.
,
Batrakova
,
E. V.
, and
Alakhov
,
V. Y.
,
2002
, “
Pluronic (R) Block Copolymers as Novel Polymer Therapeutics for Drug and Gene Delivery
,”
J. Controlled Release
,
82
(
2–3
), pp.
189
212
.10.1016/S0168-3659(02)00009-3
24.
Klibanov
,
A. L.
,
2005
, “
Ligand-Carrying Gas-Filled Microbubbles: Ultrasound Contrast Agents for Targeted Molecular Imaging
,”
Bioconjugate Chem.
,
16
(
1
), pp.
9
17
.10.1021/bc049898y
25.
Muro
,
S.
,
Schuchman
,
E. H.
, and
Muzykantov
,
V. R.
,
2006
, “
Lysosomal Enzyme Delivery by ICAM-1-Targeted Nanocarriers Bypassing Glycosylation- and Clathrin-Dependent Endocytosis
,”
Mol. Ther.
,
13
(
1
), pp.
135
141
.10.1016/j.ymthe.2005.07.687
26.
Muzykantov
,
V. R.
,
1998
, “
Immunotargeting of Drugs to the Pulmonary Vascular Endothelium as a Therapeutic Strategy
,”
Pathophysiology
,
5
(
1
), pp.
15
33
.10.1016/S0928-4680(98)00006-6
27.
Dziubla
,
T. D.
,
Shuvaev
,
V. V.
,
Hong
,
N. K.
,
Hawkins
,
B. J.
,
Madesh
,
M.
,
Takano
,
H.
,
Simone
,
E.
,
Nakada
,
M. T.
,
Fisher
,
A.
,
Albelda
,
S. M.
, and
Muzykantov
,
V. R.
,
2008
, “
Endothelial Targeting of Semi-Permeable Polymer Nanocarriers for Enzyme Therapies
,”
Biomaterials
,
29
(
2
), pp.
215
227
.10.1016/j.biomaterials.2007.09.023
28.
Dziubla
,
T. D.
, and
Muzykantov
,
V. R.
,
2006
, “
Synthetic Carriers for Vascular Delivery of Protein Therapeutics
,”
Biotechnol. Genet. Eng. Rev.
,
22
, pp.
267
298
.
29.
Liu
,
J.
,
Agrawal
,
N. J.
,
Calderon
,
A.
,
Ayyaswamy
,
P. S.
,
Eckmann
,
D. M.
, and
Radhakrishnan
,
R.
,
2011
, “
Multivalent Binding of Nanocarrier to Endothelial Cells Under Shear Flow
,”
Biophys. J.
,
101
(
2
), pp.
319
326
.10.1016/j.bpj.2011.05.063
30.
Cheng
,
Z.
,
Al Zaki
,
A.
,
Hui
,
J. Z.
,
Muzykantov
,
V. R.
, and
Tsourkas
,
A.
,
2012
, “
Multifunctional Nanoparticles: Cost Versus Benefit of Adding Targeting and Imaging Capabilities
,”
Science
,
338
(
6109
), pp.
903
910
.10.1126/science.1226338
31.
Champion
,
J. A.
,
Walker
,
A.
, and
Mitragotri
,
S.
,
2008
, “
Role of Particle Size in Phagocytosis of Polymeric Microspheres
,”
Pharm. Res.
,
25
(
8
), pp.
1815
1821
.10.1007/s11095-008-9562-y
32.
Champion
,
J. A.
,
Katare
,
Y. K.
, and
Mitragotri
,
S.
,
2007
, “
Particle Shape: A New Design Parameter for Micro- and Nanoscale Drug Delivery Carriers
,”
J. Control Release
,
121
(
1–2
), pp.
3
9
.10.1016/j.jconrel.2007.03.022
33.
Champion
,
J. A.
, and
Mitragotri
,
S.
,
2006
, “
Role of Target Geometry in Phagocytosis
,”
Proc. Natl. Acad. Sci. USA
,
103
(
13
), pp.
4930
4934
.10.1073/pnas.0600997103
34.
Weinbaum
,
S.
,
Zhang
,
X.
,
Han
,
Y.
,
Vink
,
H.
, and
Cowin
,
S. C.
,
2003
, “
Mechanotransduction and Flow Across the Endothelial Glycocalyx
,”
Proc. Natl. Acad. Sci. USA
,
100
(
13
), pp.
7988
7995
.10.1073/pnas.1332808100
35.
Lynch
,
I.
,
Salvati
,
A.
, and
Dawson
,
K. A.
,
2009
, “
Protein-Nanoparticle Interactions: What Does the Cell See?
,”
Nat. Nanotechnol.
,
4
(
9
), pp.
546
547
.10.1038/nnano.2009.248
36.
Lundqvist
,
M.
,
Stigler
,
J.
,
Elia
,
G.
,
Lynch
,
I.
,
Cedervall
,
T.
, and
Dawson
,
K. A.
,
2008
, “
Nanoparticle Size and Surface Properties Determine the Protein Corona With Possible Implications for Biological Impacts
,”
Proc. Natl. Acad. Sci. USA
,
105
(
38
), pp.
14265
14270
.10.1073/pnas.0805135105
37.
Lynch
,
I.
,
Cedervall
,
T.
,
Lundqvist
,
M.
,
Cabaleiro-Lago
,
C.
,
Linse
,
S.
, and
Dawson
,
K. A.
,
2007
, “
The Nanoparticle-Protein Complex as a Biological Entity; A Complex Fluids and Surface Science Challenge for the 21st Century
,”
Adv. Colloid Interface Sci.
,
134-135
, pp.
167
174
.10.1016/j.cis.2007.04.021
38.
Vasir
,
J. K.
, and
Labhasetwar
,
V.
,
2008
, “
Quantification of the Force of Nanoparticle-Cell Membrane Interactions and Its Influence on Intracellular Trafficking of Nanoparticles
,”
Biomaterials
,
29
(
31
), pp.
4244
4252
.10.1016/j.biomaterials.2008.07.020
39.
Mehta
,
D.
, and
Malik
,
A. B.
,
2006
, “
Signaling Mechanisms Regulating Endothelial Permeability
,”
Physiol. Rev.
,
86
, pp.
279
367
.10.1152/physrev.00012.2005
40.
Moghimi
,
S. M.
,
Hunter
,
A. C.
, and
Murray
,
J. C.
,
2001
, “
Long-Circulating and Target-Specific Nanoparticles: Theory to Practice
,”
Pharmacol. Rev.
,
53
(
2
), pp.
283
318
.
41.
Mulivor
,
A. W.
, and
Lipowsky
,
H. H.
,
2002
, “
Role of Glycocalyx in Leukocyte-Endothelial Cell Adhesion
,”
Am. J. Physiol. Heart. Circ. Physiol.
,
283
(
4
), pp.
H1282
H1291
.
42.
Muro
,
S.
,
Dziubla
,
T.
,
Qiu
,
W.
,
Leferovich
,
J.
,
Cui
,
X.
,
Berk
,
E.
, and
Muzykantov
,
V. R.
,
2006
, “
Endothelial Targeting of High-Affinity Multivalent Polymer Nanocarriers Directed to Intercellular Adhesion Molecule 1
,”
J. Pharmacol. Exp. Ther.
,
317
(
3
), pp.
1161
1169
.10.1124/jpet.105.098970
43.
Hong
,
S.
,
Leroueil
,
P. R.
,
Majoros
,
I. J.
,
Orr
,
B. G.
,
Baker
,
J. R. J.
, and
Banaszak Holl
,
M. M.
,
2007
, “
The Binding Avidity of a Nanoparticle-Based Multivalent Targeted Drug Delivery Platform
,”
Chem. Biol.
,
14
(
1
), pp.
107
115
.10.1016/j.chembiol.2006.11.015
44.
Basha
,
S.
,
Rai
,
P.
,
Poon
,
V.
,
Saraph
,
A.
,
Gujraty
,
K.
,
Go
,
M. Y.
,
Sadacharan
,
S.
,
Frost
,
M.
,
Mogridge
,
J.
, and
Kane
,
R. S.
,
2006
, “
Polyvalent Inhibitors of Anthrax Toxin That Target Host Receptors
,”
Proc. Natl. Acad. Sci. USA
,
103
(
36
), pp.
13509
13513
.10.1073/pnas.0509870103
45.
Kaittanis
,
C.
,
Santra
,
S.
, and
Perez
,
J. M.
,
2009
, “
Role of Nanoparticle Valency in the Nondestructive Magnetic-Relaxation-Mediated Detection and Magnetic Isolation of Cells in Complex Media
,”
J. Am. Chem. Soc.
,
131
(
35
), pp.
12780
12791
.10.1021/ja9041077
46.
Kaittanis
,
C.
,
Santra
,
S.
, and
Perez
,
J. M.
,
2010
, “
Emerging Nanotechnology-Based Strategies for the Identification of Microbial Pathogenesis
,”
Adv. Drug Delivery Rev.
,
62
(
4–5
), pp.
408
423
.10.1016/j.addr.2009.11.013
47.
Rai
,
P.
,
Padala
,
C.
,
Poon
,
V.
,
Saraph
,
A.
,
Basha
,
S.
,
Kate
,
S.
,
Tao
,
K.
,
Mogridge
,
J.
, and
Kane
,
R. S.
,
2006
, “
Statistical Pattern Matching Facilitates the Design of Polyvalent Inhibitors of Anthrax and Cholera Toxins
,”
Nat. Biotechnol.
,
24
(
5
), pp.
582
586
.10.1038/nbt1204
48.
Kane
,
R. S.
,
2010
, “
Thermodynamics of Multivalent Interactions: Influence of the Linker
,”
Langmuir
,
26
(
11
), pp.
8636
8640
.10.1021/la9047193
49.
Decuzzi
,
P.
,
Godin
,
B.
,
Tanaka
,
T.
,
Lee
,
S. Y.
,
Chiappini
,
C.
,
Liu
,
X.
, and
Ferrari
,
M.
,
2010
, “
Size and Shape Effects in the Biodistribution of Intravascularly Injected Particles
,”
J. Controlled Release
,
141
(
3
), pp.
320
327
.10.1016/j.jconrel.2009.10.014
50.
Decuzzi
,
P.
,
Pasqualini
,
R.
,
Arap
,
W.
, and
Ferrari
,
M.
,
2009
, “
Intravascular Delivery of Particulate Systems: Does Geometry Really Matter?
,”
Pharm. Res.
,
26
(
1
), pp.
235
243
.10.1007/s11095-008-9697-x
51.
Uma
,
B.
,
Eckmann
,
D. M.
,
Ayyaswamy
,
P. S.
, and
Radhakrishnan
,
R.
,
2012
, “
A Hybrid Formalism Combining Fluctuating Hydrodynamics and Generalized Langevin Dynamics for the Simulation of Nanoparticle Thermal Motion in an Incompressible Fluid Medium
,”
Mol. Phys.
,
110
(
11–12
), pp.
1057
1067
.10.1080/00268976.2012.663510
52.
Fedosov
,
D. A.
,
Pan
,
W.
,
Caswell
,
B.
,
Gompper
,
G.
, and
Karnaidakis
,
G. E.
,
2011
, “
Predicting Human Blood Viscosity in Silico
,”
Proc. Natl. Acad. Sci. USA
,
108
(
29
), pp.
11772
11777
.10.1073/pnas.1101210108
53.
Uma
,
B.
,
Swaminathan
,
T. N.
,
Radhakrishnan
,
R.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2011
, “
Nanoparticle Brownian Motion and Hydrodynamic Interactions in the Presence of Flow Fields
,”
Phys. Fluids
,
23
, p.
073602
.10.1063/1.3611026
54.
Uma
,
B.
,
Eckmann
,
D. M.
,
Radhakrishnan
,
R.
, and
Ayyaswamy
,
P. S.
,
2013
, “
A Hybrid Approach for the Simulation of the Thermal Motion of a Nearly Neutrally Buoyant Nanoparticle in an Incompressible Newtonian Fluid Medium
,”
ASME J. Heat Trans.
,
135
(
1
), p.
011011
.10.1115/1.4007668
55.
Uma
,
B.
,
Radhakrishnan
,
R.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2012
, “
Fluctuating Hydrodynamics Approach for the Simulation of Nanoparticle Brownian Motion in a Newtonian Fluid
,” Proceedings of the ASME 3rd Micro/Nanoscale Heat and Mass Transfer International Conference, Paper No. ISHMT–20–USA.
56.
Radhakrishnan
,
R.
,
Uma
,
B.
,
Liu
,
J.
,
Ayyaswamy
,
P. S.
, and
Eckmann
,
D. M.
, “
Temporal Multiscale Approach for Nanocarrier Motion With Simultaneous Adhesion and Hydrodynamic Interactions in Targeted Drug Delivery
,”
J. Comput. Phys.
(to be published).10.1016/j.jcp.2012.10.026
57.
Uma
,
B.
,
Radhakrishnan
,
R.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2012
, “
Modeling of a Nanoparticle Motion in a Newtonian Fluid: A Comparison Between Fluctuating Hydrodynamics and Generalized Langevin Procedures
,”
Proceedings of the ASME 3rd Micro/Nanoscale Heat and Mass Transfer International Conference
(to be published).
58.
Uma
,
B.
,
Eckmann
,
D. M.
,
Radhakrishnan
,
R.
, and
Ayyaswamy
,
P. S.
,
2013
, “
Nanocarrier-Cell Surface Adhesive and Hydrodynamic Interactions: Ligand-Receptor Bond Sensitivity Study
,”
ASME J. Nanotechnol. Eng. Med.
,
3
(
3
), p.
031010
.10.1115/1.4007522
59.
Uma
,
B.
,
Swaminathan
,
T. N.
,
Ayyaswamy
,
P. S.
,
Eckmann
,
D. M.
, and
Radhakrishnan
,
R.
,
2011
, “
Generalized Langevin Dynamics of a Nanoparticle Using a Finite Element Approach: Thermostating With Correlated Noise
,”
J. Chem. Phys.
,
135
, p.
144104
.10.1063/1.3635776
60.
Charoenphol
,
P.
,
Huang
,
R. B.
, and
Eniola-Adefeso
,
O.
,
2010
, “
Potential Role of Size and Hemodynamics in the Efficacy of Vascular-Targeted Spherical Drug Carriers
,”
Biomaterials
,
31
(
6
), pp.
1392
1402
.10.1016/j.biomaterials.2009.11.007
61.
Ho
,
K.
,
Lapitsky
,
Y.
,
Shi
,
M.
, and
Shoichet
,
M.
,
2009
, “
Tunable Immunonanoparticle Binding to Cancer Cells: Thermodynamic Analysis of Targeted Drug Delivery Vehicles
,”
Soft Matter
,
5
, pp.
1074
1080
.10.1039/b814204a
62.
Elias
,
D. R.
,
Poloukhtine
,
A.
,
Popik
,
V.
, and
Tsourkas
,
A.
,
2013
, “
Effect of Ligand Density, Receptor Density, and Nanoparticle Size on Cell Targeting
,”
Nanomedicine
,
9
(
2
), pp.
194
201
.10.1016/j.nano.2012.05.015
63.
Woo
,
H. J.
, and
Roux
,
B.
,
2005
, “
Calculation of Absolute Protein-Ligand Binding Free Energy From Computer Simulations
,”
Proc. Natl. Acad. Sci. USA
,
102
(
19
), pp.
6825
6830
.10.1073/pnas.0409005102
64.
Liu
,
J.
,
Agrawal
,
N. J.
,
Eckmann
,
D. M.
,
Ayyaswamy
,
P. S.
, and
Radhakrishnan
,
R.
,
2012
, “
Top-Down Mesoscale Models and Free Energy Calculations of Multivalent Protein-Protein and Protein-Membrane Interactions
,”
Innovations in Biomolecular Modeling and Simulations
,
T.
Schlick
, ed.,
Royal Society of Chemistry Publishing
,
Cambridge, UK
, pp.
272
287
.
65.
Liu
,
J.
,
Bradley
,
R. P.
,
Eckmann
,
D. M.
,
Ayyaswamy
,
P. S.
, and
Radhakrishnan
,
R.
,
2011
, “
Multiscale Modeling of Functionalized Nanocarriers in Targeted Drug Delivery
,”
Curr. Nanosci.
,
7
, pp.
727
735
.10.2174/157341311797483826
66.
Liu
,
J.
,
Weller
,
G. E.
,
Zern
,
B.
,
Ayyaswamy
,
P. S.
,
Eckmann
,
D. M.
,
Muzykantov
,
V. R.
, and
Radhakrishnan
,
R.
,
2010
, “
Computational Model for Nanocarrier Binding to Endothelium Validated Using In Vivo, In Vitro, and Atomic Force Microscopy Experiments
,”
Proc. Natl. Acad. Sci. USA
,
107
(
38
), pp.
16530
16535
.10.1073/pnas.1006611107
67.
Senn
,
H. M.
, and
Thiel
,
W.
,
2007
, “
QM/MM Methods for Biological Systems
,”
Atomistic Approaches in Modern Biology: From Quantum Chemistry to Molecular Simulations
,
Springer-Verlag
,
Berlin
, pp.
173
290
.
68.
Klein
,
M. L.
, and
Shinoda
,
W.
,
2008
, “
Large-Scale Molecular Dynamics Simulations of Self-Assembling Systems
,”
Science
,
321
(
5890
), pp.
798
800
.10.1126/science.1157834
69.
Chaikin
,
P. M.
, and
Lubensky
,
T. C.
,
1995
,
Principles of Condensed Matter Physics
,
Cambridge University Press
,
Cambridge, England
.
70.
Kevrekidis
,
I. G.
,
Gear
,
C. W.
,
Hyman
,
J. M.
,
Kevrekidis
,
P. G.
,
Runborg
,
O.
, and
Theodoropoulos
,
C.
,
2003
, “
Equation-Free, Coarse-Grained Multiscale Computation: Enabling Microscopic Simulators to Perform System-Level Analysis
,”
Commun. Math. Sci.
,
1
, pp.
715
762
.
71.
Yasuda
,
S.
, and
Yamamoto
,
R.
,
2010
, “
Multiscale Modeling and Simulation for Polymer Melt Flows Between Parallel Plates
,”
Phys. Rev. E
,
81
(
3
), p.
036308
.10.1103/PhysRevE.81.036308
72.
Abraham
,
F. F.
,
Broughton
,
J. Q.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
,
1999
, “
Concurrent Coupling of Length Scales: Methodology and Application
,”
Phys. Rev. B
,
60
, pp.
2391
2402
.10.1103/PhysRevB.60.2391
73.
Flekkoy
,
E. G.
,
Wagner
,
G.
, and
Feder
,
J.
,
2000
, “
Hybrid Model for Combined Particle and Continuum Dynamics
,”
Europhys. Lett.
,
52
, pp.
271
276
.10.1209/epl/i2000-00434-8
74.
Hadjiconstantinou
,
N. G.
, and
Patera
,
A. T.
,
1997
, “
Heterogeneous Atomistic-Continuum Representations for Dense Fluid Systems
,”
Int. J. Mod. Phys. C
,
8
(
4
), pp.
967
976
.10.1142/S0129183197000837
75.
Liu
,
W. K.
,
Qian
,
D.
,
Gonella
,
S.
,
Li
,
S. F.
,
Chen
,
W.
, and
Chirputkar
,
S.
,
2010
, “
Multiscale Methods for Mechanical Science of Complex Materials: Bridging From Quantum to Stochastic Multiresolution Continuum
,”
Int. J. Numer. Methods Eng.
,
83
(
8–9
), pp.
1039
1080
.10.1002/nme.2915
76.
Luan
,
B. Q.
,
Hyun
,
S.
,
Molinari
,
J. F.
,
Bernstein
,
N.
, and
Robbins
,
M. O.
,
2006
, “
Multiscale Modeling of Two-Dimensional Contacts
,”
Phys. Rev. E
,
74
(
4
), p.
046710
.10.1103/PhysRevE.74.046710
77.
Nie
,
X. B.
,
Chen
,
S. Y.
,
E
,
W. N.
, and
Robbins
,
M. O.
,
2004
, “
A Continuum and Molecular Dynamics Hybrid Method for Micro- and Nano-Fluid Flow
,”
J. Fluid Mech.
,
500
, pp.
55
64
.10.1017/S0022112003007225
78.
O'Connell
,
S. T.
, and
Thompson
,
P. A.
,
1995
, “
Molecular Dynamics-Continuum Hybrid Computations: A Tool for Studying Complex Fluid Flows
,”
Phys. Rev. E
,
52
(
6
), pp.
R5792
R5795
.10.1103/PhysRevE.52.R5792
79.
Shenoy
,
V. B.
,
Miller
,
R.
,
Tadmor
,
E. B.
,
Phillips
,
R.
, and
Ortiz
,
M.
,
1998
, “
Quasicontinuum Models of Interfacial Structure and Deformation
,”
Phys. Rev. Lett.
,
80
(
4
), pp.
742
745
.10.1103/PhysRevLett.80.742
80.
Weinan
,
E.
, and
Engquist
,
B.
,
2003
, “
Multiscale Modeling in Computation
,”
Notices of the AMS
,
50
(
9
), pp.
1062
1070
.
81.
Weinan
,
E.
,
Engquist
,
B.
, and
Huang
,
Z. Y.
,
2003
, “
Heterogeneous Multiscale Method: A General Methodology for Multiscale Modeling
,”
Phys. Rev. B
,
67
(
9
), p.
092101
.10.1103/PhysRevB.67.092101
82.
Uma
,
B.
,
Ayyaswamy
,
P. S.
,
Radhakrishnan
,
R.
, and
Eckmann
,
D. M.
, “
Fluctuating Hydrodynamics Approach for the Simulation of Nanoparticle Brownian Motion in a Newtonian Fluid
,”
Int. J. Micro-Nano Scale Transport
(in press).
83.
Hauge
,
E. H.
, and
Martin-Löf
,
A.
,
1973
, “
Fluctuating Hydrodynamics and Brownian Motion
,”
J. Stat. Phys.
,
7
(
3
), pp.
259
281
.10.1007/BF01030307
84.
Soppimath
,
K. S.
,
Aminabhavi
,
T. M.
,
Kulkarni
,
A. R.
, and
Rudzinski
,
W. E.
,
2001
, “
Biodegradable Polymeric Nanoparticles as Drug Delivery Devices
,”
J. Controlled Release
,
70
(
1–2
), pp.
1
20
.10.1016/S0168-3659(00)00339-4
85.
Ranade
,
V. V.
, and
Cannon
,
J. B.
, 2011,
Drug Delivery Systems
,
CRC Press
, Boca Raton, FL, pp. 215–242.
86.
Amin
,
S.
,
Rajabnezhad
,
S.
, and
Kohli
,
K.
,
2009
, “
Hydrogels as Potential Drug Delivery Systems
,”
Sci. Res. Essays
,
4
(
11
), pp.
1175
1183
.
87.
Hans
,
M. L.
, and
Lowman
,
A. M.
,
2002
, “
Biodegradable Nanoparticles for Drug Delivery and Targeting
,”
Curr. Opin. Solid State Mat. Sci.
,
6
(
4
), pp.
319
327
.10.1016/S1359-0286(02)00117-1
88.
Mukundakrishnan
,
K.
,
Ayyaswamy
,
P. S.
, and
Eckmann
,
D. M.
,
2012
, “
Computational Simulation of Hematocrit Effects on Arterial Embolism Dynamics
,”
Aviat., Space Environ. Med.
,
83
(
2
), pp.
92
101
.10.3357/ASEM.3085.2012
89.
Ayyaswamy
,
P. S.
,
2010
, “
Introduction to Biofluid Mechanics
,”
Fluid Mechanics
,
P. K.
Kundu
, and
I. M.
Cohen
, eds.,
Elsevier
,
New York
, pp.
765
840
.
90.
Mukundakrishnan
,
K.
,
Ayyaswamy
,
P. S.
, and
Eckmann
,
D. M.
,
2009
, “
Bubble Motion in a Blood Vessel: Shear Stress Induced Endothelial Cell Injury
,”
ASME J. Biomech. Eng.
,
131
(
7
), p.
074516
.10.1115/1.3153310
91.
Baish
,
J. W.
,
Mukundakrishnan
,
K.
, and
Ayyaswamy
,
P. S.
,
2009
, “
Numerical Models of Blood Flow Effects in Biological Tissues
,”
Advances in Numerical Heat Transfer
,
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J. P.
Abraham
, eds.,
Taylor and Francis
,
London
, pp.
29
74
.
92.
Mukundakrishnan
,
K.
,
Ayyaswamy
,
P. S.
, and
Eckmann
,
D. M.
,
2008
, “
Finite-Sized Gas Bubble Motion in a Blood Vessel: Non-Newtonian Effects
,”
Phys. Rev. E
,
78
(
3
), p.
036303
.10.1103/PhysRevE.78.036303
93.
Mukundakrishnan
,
K.
,
Hu
,
H. H.
, and
Ayyaswamy
,
P. S.
,
2008
, “
The Dynamics of Two Spherical Particles in a Confined Rotating Flow: Pedalling Motion
,”
J. Fluid Mech.
,
599
, pp.
169
204
.10.1017/S0022112007000092
94.
Mukundakrishnan
,
K.
,
Quan
,
S.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2007
, “
Numerical Study of Wall Effects on Buoyant Gas-Bubble Rise in a Liquid-Filled Finite Cylinder
,”
Phys. Rev. E
,
76
(
3
), p.
036308
.10.1103/PhysRevE.76.036308
95.
Mukundakrishnan
,
K.
,
Ayyaswamy
,
P. S.
,
Risbud
,
M.
,
Hu
,
H. H.
, and
Shapiro
,
I. M.
,
2004
, “
Modeling of Phosphate Ion Transfer to the Surface of Osteoblasts Under Normal Gravity and Simulated Microgravity Conditions
,”
Ann N.Y Acad. Sci.
,
1027
, pp.
85
98
.10.1196/annals.1324.009
96.
Fedosov
,
D. A.
,
Caswell
,
B.
, and
Karniadakis
,
G. E.
,
2010
, “
A Multiscale Red Blood Cell Model With Accurate Mechanics, Rheology, and Dynamics
,”
Biophys. J.
,
98
(
10
), pp.
2215
2225
.10.1016/j.bpj.2010.02.002
97.
Sharan
,
M.
, and
Popel
,
A. S.
,
2001
, “
A Two-Phase Model for Flow of Blood in Narrow Tubes With Increased Effective Viscosity Near the Wall
,”
Biorheology
,
38
(
5–6
), pp.
415
428
.
98.
Tan
,
J.
,
Thomas
,
A.
, and
Liu
,
Y.
,
2012
, “
Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation
,”
Soft Matter
,
8
(
6
), pp.
1934
1946
.10.1039/c2sm06391c
99.
AlMomani
,
T.
,
Udaykumar
,
H. S.
,
Marshall
,
J. S.
, and
Chandran
,
K. B.
,
2008
, “
Micro-Scale Dynamic Simulation of Erythrocyte-Platelet Interaction in Blood Flow
,”
Ann. Biomed. Eng.
,
36
(
6
), pp.
905
920
.10.1007/s10439-008-9478-z
100.
Liu
,
Y. L.
, and
Liu
,
W. K.
,
2006
, “
Rheology of Red Blood Cell Aggregation by Computer Simulation
,”
J. Comput. Phys.
,
220
(
1
), pp.
139
154
.10.1016/j.jcp.2006.05.010
101.
Liu
,
Y. L.
,
Zhang
,
L.
,
Wang
,
X. D.
, and
Liu
,
W. K.
,
2004
, “
Coupling of Navier-Stokes Equations With Protein Molecular Dynamics and Its Application to Hemodynamics
,”
Int. J. Numer. Methods Fluids
,
46
(
12
), pp.
1237
1252
.10.1002/fld.798
102.
Peskin
,
C. S.
, and
McQueen
,
D. M.
,
1989
, “
A 3Dimensional Computational Method for Blood-Flow in the Heart. 1. Immersed Elastic Fibers in a Viscous Incompressible Fluid
,”
J. Comput. Phys.
,
81
(
2
), pp.
372
405
.10.1016/0021-9991(89)90213-1
103.
Peskin
,
C. S.
, and
Schlick
,
T.
,
1989
, “
Molecular Dynamics by the Backward Euler's Method
,”
Commun. Pure App. Math.
,
42
, pp.
1001
1031
.10.1002/cpa.3160420706
104.
Allen
,
M. P.
, and
Tildesley
,
D. J.
,
1990
,
Computer Simulation of Liquids
,
Oxford University Press
,
New York
.
105.
Damiano
,
E. R.
,
1998
, “
The Effect of the Endothelial-Cell Glycocalyx on the Motion of Red Blood Cells Through Capillaries
,”
Microvasc. Res.
,
55
(
1
), pp.
77
91
.10.1006/mvre.1997.2052
106.
Guo
,
P.
,
Weinstein
,
A. M.
, and
Weinbaum
,
S.
,
2000
, “
A Hydrodynamic Mechanosensory Hypothesis for Brush Border Microvilli
,”
Am. J. Physiol. Renal Physiol.
,
279
(
4
), pp.
F698
F712
.
107.
Fung
,
Y. C.
,
1997
,
Biomechanics: Circulation
,
Springer-Verlag
,
New York
.
108.
Popel
,
A. S.
, and
Johnson
,
P. C.
,
2005
, “
Microcirculation and Hemorheology
,”
Ann. Rev. Fluid Mech.
,
37
, pp.
43
69
.10.1146/annurev.fluid.37.042604.133933
109.
Sherman
,
T. F.
,
Popel
,
A. S.
,
Koller
,
A.
, and
Johnson
,
P. C.
,
1989
, “
The Cost of Departure From Optimal Radii in Microvascular Networks
,”
J. Theor. Biol.
,
136
(
3
), pp.
245
265
.10.1016/S0022-5193(89)80162-6
110.
Shi
,
H.
,
Kleinstreuer
,
C.
,
Zhang
,
Z.
, and
Kim
,
C. S.
,
2004
, “
Nanoparticle Transport and Deposition in Bifurcating Tubes With Different Inlet Conditions
,”
Phys. Fluids
,
16
(
7
), pp.
2199
2213
.10.1063/1.1724830
111.
Williams
,
H. R.
,
Trask
,
R. S.
,
Weaver
,
P. M.
, and
Bond
,
I. P.
,
2008
, “
Minimum Mass Vascular Networks in Multifunctional Materials
,”
J. R. Soc. Interface
,
5
(
18
), pp.
55
65
10.1098/rsif.2007.1022.
112.
Towles
,
K. B.
,
Beausang
,
J. F.
,
Garcia
,
H. G.
,
Phillips
,
R.
, and
Nelson
,
P. C.
,
2009
, “
First-Principles Calculation of DNA Looping in Tethered Particle Experiments
,”
Phys. Biol.
,
6
(
2
), p.
025001
.10.1088/1478-3975/6/2/025001
113.
Mohan
,
A.
, and
Doyle
,
P. S.
,
2007
, “
Unraveling of a Tethered Polymer Chain in Uniform Solvent Flow
,”
Macromolecules
,
40
(
12
), pp.
4301
4312
.10.1021/ma070050p
114.
Agrawal
,
N. J.
,
Radhakrishnan
,
R.
, and
Purohit
,
P. K.
,
2008
, “
Geometry of Mediating Protein Affects the Probability of Loop Formation in DNA
,”
Biophys. J.
,
94
(
8
), pp.
3150
3158
.10.1529/biophysj.107.122986
115.
Radhakrishnan
,
R.
, and
Schlick
,
T.
,
2004
, “
Orchestration of Cooperative Events in DNA Synthesis and Repair Mechanism Unraveled by Transition Path Sampling of DNA Polymerase Beta's Closing
,”
Proc. Natl. Acad. Sci. USA
,
101
(
16
), pp.
5970
5975
.10.1073/pnas.0308585101
116.
Bolhuis
,
P. G.
,
Chandler
,
D.
,
Dellago
,
C.
, and
Geissler
,
P. L.
,
2002
, “
Transition Path Sampling: Throwing Ropes Over Dark Mountain Passes
,”
Ann. Rev. Phys. Chem.
,
51
, pp.
291
318
.10.1146/annurev.physchem.53.082301.113146
117.
Agrawal
,
N.
,
Weinstein
,
J.
, and
Radhakrishnan
,
R.
,
2008
, “
Landscape of Membrane-Phase Behavior Under the Influence of Curvature-Inducing Proteins
,”
Mol. Phys.
,
106
, pp.
1913
1923
.10.1080/00268970802365990
118.
Weinstein
,
J.
, and
Radhakrishnan
,
R.
,
2006
, “
A Coarse-Grained Methodology for Simulating Interfacial Dynamics in Complex Fluids: Application to Protein Mediated Membrane Processes
,”
Mol. Phys.
,
104
(
22–24
), pp.
3653
3666
.10.1080/00268970600997580
119.
Agrawal
,
N. J.
, and
Radhakrishnan
,
R.
,
2009
, “
Calculation of Free Energies in Fluid Membranes Subject to Heterogeneous Curvature Fields
,”
Phys. Rev. E
,
80
(
1
), p.
011925
.10.1103/PhysRevE.80.011925
120.
Lawrence
,
C. L. L.
, and
Frank
,
L. H. B.
,
2004
, “
Brownian Dynamics in Fourier Space: Membrane Simulations Over Long Length and Time Scales
,”
Phys. Rev. Lett.
,
93
(
25
), p.
256001
.10.1103/PhysRevLett.93.256001
121.
Chakraborty
,
A. K.
,
Dustin
,
M. L.
, and
Shaw
,
A. S.
,
2003
, “
In Silico Models for Cellular and Molecular Immunology: Successes, Promises and Challenges
,”
Nat. Immun.
,
4
, pp.
933
936
.10.1038/ni1003-933
122.
Higuchi
,
T.
,
1963
, “
Mechanism of Sustained-Action Medication. Theoretical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices
,”
J. Pharm. Sci.
,
52
(
12
), pp.
1145
1149
.10.1002/jps.2600521210
123.
Arifin
,
D. Y.
,
Lee
,
L. Y.
, and
Wang
,
C. H.
,
2006
, “
Mathematical Modeling and Simulation of Drug Release From Microspheres: Implications to Drug Delivery Systems
,”
Adv. Drug. Res.
,
58
(
12–13
), pp.
1274
1325
.10.1016/j.addr.2006.09.007
124.
Higuchi
,
T.
,
1961
, “
Rate of Release of Medicaments From Ointment Bases Containing Drugs in Suspension
,”
J. Pharm. Sci.
,
50
(
10
), pp.
874
875
.10.1002/jps.2600501018
125.
Khanafer
,
K.
, and
Vafai
,
K.
,
2006
, “
The Role of Porous Media in Biomedical Engineering as Related to Magnetic Resonance Imaging and Drug Delivery
,”
Heat Mass Transfer
,
42
, pp.
939
953
.10.1007/s00231-006-0142-6
126.
Siepmann
,
J.
, and
Goepferich
,
A.
,
2001
, “
Mathematical Modeling of Bioerodible, Polymeric Drug Delivery Systems
,”
Adv. Drug Res.
,
48
(
2–3
), pp.
229
247
.10.1016/S0169-409X(01)00116-8
127.
Frenning
,
G.
,
Brohede
,
U.
, and
Stromme
,
M.
,
2005
, “
Finite Element Analysis of the Release of Slowly Dissolving Drugs From Cylindrical Matrix Systems
,”
J. Controlled Release
,
107
(
2
), pp.
320
329
.10.1016/j.jconrel.2005.06.016
128.
Frenning
,
G.
,
Tunon
,
A.
, and
Alderborn
,
G.
,
2003
, “
Modelling of Drug Release From Coated Granular Pellets
,”
J. Controlled Release
,
92
(
1–2
), pp.
113
123
.10.1016/S0168-3659(03)00300-6
129.
Lemaire
,
V.
,
Belair
,
J.
, and
Hildgen
,
P.
,
2003
, “
Structural Modeling of Drug Release From Biodegradable Porous Matrices Based on a Combined Diffusion/Erosion Process
,”
Int. J. Pharm.
,
258
(
1–2
), pp.
95
107
.10.1016/S0378-5173(03)00165-0
130.
Narasimhan
,
B.
,
2001
, “
Mathematical Models Describing Polymer Dissolution: Consequences for Drug Delivery
,”
Adv. Drug Res.
,
48
(
2–3
), pp.
195
210
.10.1016/S0169-409X(01)00117-X
131.
Peer
,
D.
,
Karp
,
J. M.
,
Hong
,
S.
,
Farokhzad
,
O. C.
,
Margalit
,
R.
, and
Langer
,
R.
,
2007
, “
Nanocarriers as an Emerging Platform for Cancer Therapy
,”
Nat. Nanotechnol.
,
2
(
12
), pp.
751
760
.10.1038/nnano.2007.387
132.
Raman
,
C.
,
Berkland
,
C.
,
Kim
,
K.
, and
Pack
,
D. W.
,
2005
, “
Modeling Small-Molecule Release From PLG Microspheres: Effects of Polymer Degradation and Nonuniform Drug Distribution
,”
J. Controlled Release
,
103
(
1
), pp.
149
158
.10.1016/j.jconrel.2004.11.012
133.
Zhou
,
Y.
, and
Wu
,
X. Y.
,
2003
, “
Modeling and Analysis of Dispersed-Drug Release Into a Finite Medium From Sphere Ensembles With a Boundary Layer
,”
J. Controlled Release
,
90
(
1
), pp.
23
36
.10.1016/S0168-3659(03)00128-7
134.
Siepmann
,
J.
,
Ainaoui
,
A.
,
Vergnaud
,
J. M.
, and
Bodmeier
,
R.
,
1998
, “
Calculation of the Dimensions of Drug-Polymer Devices Based on Diffusion Parameters
,”
J. Pharm. Sci.
,
87
(
7
), pp.
827
832
.10.1021/js980006a
135.
Batycky
,
R. P.
,
Hanes
,
J.
,
Langer
,
R.
, and
Edwards
,
D. A.
,
1997
, “
A Theoretical Model of Erosion and Macromolecular Drug Release From Biodegrading Microspheres
,”
J. Pharm. Sci.
,
86
(
12
), pp.
1464
1477
.10.1021/js9604117
136.
Bezemer
,
J. M.
,
Radersma
,
R.
,
Grijpma
,
D. W.
,
Dijkstra
,
P. J.
,
Feijen
,
J.
, and
van Blitterswijk
,
C. A.
,
2000
, “
Zero-Order Release of Lysozyme From Poly(ethylene glycol)/Poly(butylene terephthalate) Matrices
,”
J. Controlled Release
,
64
(
1–3
), pp.
179
192
.10.1016/S0168-3659(99)00127-3
137.
Charlier
,
A.
,
Leclerc
,
B.
, and
Couarraze
,
G.
,
2000
, “
Release of Mifepristone From Biodegradable Matrices: Experimental and Theoretical Evaluations
,”
Int. J. Pharm.
,
200
(
1
), pp.
115
120
.10.1016/S0378-5173(00)00356-2
138.
Cohen
,
D. S.
, and
Erneux
,
T.
,
1988
, “
Free Boundary Problems in Controlled Release Pharmaceuticals: II. Swelling-Controlled Release
,”
SIAM J. Appl. Math.
,
48
(
6
), pp.
1466
1474
.10.1137/0148090
139.
Flynn
,
G. L.
,
Yalkowsky
,
S. H.
, and
Roseman
,
T. J.
,
1974
, “
Mass Transport Phenomena and Models: Theoretical Concepts
,”
J. Pharm. Sci.
,
63
(
4
), pp.
479
510
.10.1002/jps.2600630403
140.
Kosmidis
,
K.
,
Argyrakis
,
P.
, and
Macheras
,
P.
,
2003
, “
A Reappraisal of Drug Release Laws Using Monte Carlo Simulations: The Prevalence of the Weibull Function
,”
Pharm. Res.
,
20
, pp.
988
995
.10.1023/A:1024497920145
141.
Zhang
,
M.
,
Yang
,
Z.
,
Chow
,
L. L.
, and
Wang
,
C. H.
,
2003
, “
Simulation of Drug Release From Biodegradable Polymeric Microspheres With Bulk and Surface Erosions
,”
J. Pharm. Sci.
,
92
(
10
), pp.
2040
2056
.10.1002/jps.10463
142.
Peppas
,
N. A.
,
1985
, “
Analysis of Fickian and Non-Fickian Drug Release From Polymers
,”
Pharm. Acta Helv.
,
60
, pp.
110
111
.
143.
Goldman
,
A. J.
,
Cox
,
R. G.
, and
Brenner
,
H.
,
1967
, “
Slow Viscous Motion of a Sphere Parallel to a Plane Wall. 2. Couette Flow
,”
Chem. Eng. Sci.
,
22
(
4
), pp.
653
660
.10.1016/0009-2509(67)80048-4
144.
Happel
,
J.
, and
Brenner
,
H.
,
1983
,
Low Reynolds Number Hydrodynamics
,
Martinus Nijhoff Publishers
,
The Hague, Netherlands
.
145.
Agrawal
,
N. J.
, and
Radhakrishnan
,
R.
,
2007
, “
Role of Glycocalyx in Nanocarrier-Cell Adhesion: Thermodynamic Model and Monte Carlo Simulations
,”
J. Phys. Chem. B
,
111
(
43
), pp.
15848
15856
.
146.
Hanley
,
W.
,
McCarty
,
O.
,
Jadhav
,
S.
,
Tseng
,
Y.
,
Wirtz
,
D.
, and
Konstantopoulos
,
K.
,
2003
, “
Single Molecule Characterization of P-Selectin/Ligand Binding
,”
J. Biol. Chem.
,
278
(
12
), pp.
10556
10561
.10.1074/jbc.M213233200
147.
Zhang
,
X.
,
Wojcikiewicz
,
E.
, and
Moy
,
V. T.
,
2002
, “
Force Spectroscopy of the Leukocyte Function-Associated Antigen-1/Intercellular Adhesion Molecule-1 Interaction
,”
Biophys. J.
,
83
(
4
), pp.
2270
2279
.10.1016/S0006-3495(02)73987-8
148.
Calderon
,
A.
,
Bhowmick
,
T.
,
Leferovich
,
J.
,
Burman
,
B.
,
Pichette
,
B.
,
Muzykantov
,
V. R.
,
Eckmann
,
D. M.
, and
Muro
,
S.
,
2011
, “
Optimizing Endothelial Targeting by Modulating the Antibody Density and Particle Concentration of Anti-ICAM Coated Carriers
,”
J. Controlled Release
,
150
(
1
), pp.
37
44
.10.1016/j.jconrel.2010.10.025
149.
Cheng
,
Z.
,
Elias
,
D. R.
,
Kamat
,
N. P.
,
Johnston
,
E. D.
,
Poloukhtine
,
A.
,
Popik
,
V.
,
Hammer
,
D. A.
, and
Tsourkas
,
A.
,
2011
, “
Improved Tumor Targeting of Polymer-Based Nanovesicles Using Polymer-Lipid Blends
,”
Bioconjugate Chem.
,
22
(
10
), pp.
2021
2029
.10.1021/bc200214g
150.
Elias
,
D. R.
,
Cheng
,
Z.
, and
Tsourkas
,
A.
,
2010
, “
An Intein-Mediated Site-Specific Click Conjugation Strategy for Improved Tumor Targeting of Nanoparticle Systems
,”
Small
,
6
(
21
), pp.
2460
2468
.10.1002/smll.201001095
151.
Muro
,
S.
,
Gajewski
,
C.
,
Koval
,
M.
, and
Muzykantov
,
V. R.
,
2005
, “
ICAM-1 Recycling in Endothelial Cells: A Novel Pathway for Sustained Intracellular Delivery and Prolonged Effects of Drugs
,”
Blood
,
105
(
2
), pp.
650
658
.10.1182/blood-2004-05-1714
152.
Muro
,
S.
,
Wiewrodt
,
R.
,
Thomas
,
A.
,
Koniaris
,
L.
,
Albelda
,
S. M.
,
Muzykantov
,
V. R.
, and
Koval
,
M.
,
2003
, “
A Novel Endocytic Pathway Induced by Clustering Endothelial ICAM-1 or PECAM-1
,”
J. Cell Sci.
,
116
(
8
), pp.
1599
1609
.10.1242/jcs.00367
153.
Christofidou-Solomidou
,
M.
,
Kennel
,
S.
,
Scherpereel
,
A.
,
Wiewrodt
,
R.
,
Solomides
,
C. C.
,
Pietra
,
G. G.
,
Murciano
,
J. C.
,
Shah
,
S. A.
,
Ischiropoulos
,
H.
,
Albelda
,
S. M.
, and
Muzykantov
,
V. R.
,
2002
, “
Vascular Immunotargeting of Glucose Oxidase to the Endothelial Antigens Induces Distinct Forms of Oxidant Acute Lung Injury: Targeting to Thrombomodulin, but not to PECAM-1, Causes Pulmonary Thrombosis and Neutrophil Transmigration
,”
Am. J. Pathol.
,
160
(
3
), pp.
1155
1169
.10.1016/S0002-9440(10)64935-8
154.
Chrastina
,
A.
,
Valadon
,
P.
,
Massey
,
K. A.
, and
Schnitzer
,
J. E.
,
2010
, “
Lung Vascular Targeting Using Antibody to Aminopeptidase P: CT-SPECT Imaging, Biodistribution and Pharmacokinetic Analysis
,”
J. Vasc. Res.
,
47
(
6
), pp.
531
543
.10.1159/000313880
155.
Shuvaev
,
V. V.
,
Han
,
J. Y.
,
Yu
,
K. J.
,
Huang
,
S. H.
,
Hawkins
,
B. J.
,
Madesh
,
M.
,
Nakada
,
M.
, and
Muzykantov
,
V. R.
,
2011
, “
PECAM-Targeted Delivery of SOD Inhibits Endothelial Inflammatory Response
,”
FASEB J.
,
25
(
1
), pp.
348
357
.10.1096/fj.10-169789
156.
Zern
,
B. J.
,
Chacko
,
A.-M.
,
Liu
,
J.
,
Greineder
,
C. F.
,
Blankemeyer
,
E. R.
,
Radhakrishnan
,
R.
, and
Muzykantov
,
V. R.
,
2013
, “
Reduction of Nanoparticle Avidity Enhances the Selectivity of Vascular Targeting and PET Detection of Pulmonary Inflammation
,”
ACS Nano
,
7
(
3
), pp.
2461
2469
.10.1021/nn305773f
You do not currently have access to this content.