The two constituent phases of the nanofluids have thermal expansion coefficients that are significantly different. Moreover, the variability of the thermal expansion coefficients of fluids with temperature is significantly higher than that of solid materials. The mismatch of the thermal expansion coefficients creates changes of the volumetric fraction of solids with temperature changes. The changes can be significant with fluids that have high thermal expansion coefficients, such as refrigerants and fluids that operate close to their critical points. Since the thermal conductivity of nanofluids is a very strong function of the volumetric fraction of the nanoparticles, these changes of the volumetric fraction may cause significant effects on the thermal conductivity of the nanofluids, which must be accounted for in any design process.

References

References
1.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
, pp.
2252
2254
.10.1063/1.1408272
2.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Trans.
,
125
(4), pp.
567
574
.10.1115/1.1571080
3.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Effective Thermal Conductivity of Aqueous Suspensions of Carbon Nanotubes (Carbon Nanotube Nanofluids)
,”
J. Thermophys. Heat Transfer
,
18
(
4
), pp.
481
485
.10.2514/1.9934
4.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
,
2006
, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
,
49
, pp.
240
250
.10.1016/j.ijheatmasstransfer.2005.07.009
5.
Li
,
H. C.
, and
Peterson
,
G. P.
,
2006
, “
Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
J. Appl. Phys.
,
99
, p.
084314
.10.1063/1.2191571
6.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
, pp.
4410
4428
.10.1016/j.ijheatmasstransfer.2011.04.048
7.
Philip
,
J.
,
Sharma
,
P. D.
, and
Raj
,
B.
,
2008
, “
Evidence for Enhanced Thermal Conduction Through Percolating Structures in Nanofluids
,”
Nanotechnology
,
19
, p.
305706
.10.1088/0957-4484/19/30/305706
8.
Eapen
,
J.
,
Rusconi
,
R.
,
Piazza
,
R.
, and
Yip
,
S.
,
2010
, “
The Classical Nature of Thermal Conduction in Nanofluids
,”
ASME J. Heat Trans.
,
132
(10), p.
102402
.10.1115/1.4001304
9.
Gupta
,
S. S.
,
Siva
, V
. M.
,
Krishnan
,
S.
,
Sreeprasad
,
T. S.
,
Singh
,
P. K.
,
Pradeep
,
T.
, and
Das
,
S. K.
,
2011
, “
Thermal Conductivity Enhancement of Nanofluids Containing Graphene Nanosheets
,”
J. Appl. Phys.
,
110
, p.
084302
.10.1063/1.3650456
10.
Michaelides
,
E. E.
,
2013
, “
Transport Properties of Nanofluids—A Critical Review
,”
J. Non-Equil. Thermodyn.
,
38
, pp.
1
79
.10.1515/jnetdy-2012-0023
11.
Ghadimi
,
A.
,
Saidur
,
R.
, and
Metselaar
,
H. S. C.
,
2011
, “
A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions
,”
Int. J. Heat Mass Transfer
,
54
, pp.
4051
4068
.10.1016/j.ijheatmasstransfer.2011.04.014
12.
Cherkasova
,
A. S.
, and
Shan
,
J. W.
,
2010
, “
Particle Aspect-Ratio and Agglomeration-State Effects on the Effective Thermal Conductivity of Aqueous Suspensions of Multiwalled Carbon Nanotubes
,”
ASME J. Heat Trans.
,
132
(8), p.
082402
.10.1115/1.4001364
13.
Gibbs
,
J. W.
,
1928
, “
On the Equilibrium of Heterogeneous Substances
,”
The Collective Works of J. Willard Gibbs
,
Longmans
,
New York
.
14.
Michaelides
,
E. E.
,
2013
,
Heat and Mass Transfer in Particulate Suspensions
,
Springer
,
Berlin
, Chap. 4.
15.
Haar
,
L.
,
Gallaher
,
J. S.
, and
Kell
,
G. S.
,
1984
,
NBS/NRC Steam Tables
,
McGraw-Hill
,
New York
.
16.
Moran
,
M. J.
, and
Shapiro
,
H. N.
,
2008
,
Fundamentals of Engineering Thermodynamics
,
6th ed.
,
Wiley
,
New York
.
You do not currently have access to this content.