Experimental investigations were carried out for the determination of thermal conductivity of silicon dioxide (SiO2) nanoparticles dispersed in 60% ethylene glycol and 40% water by mass. Experiments conducted in a temperature range of 20 °C to 90 °C and for several particle volumetric concentrations up to 10% showed that the ratio of thermal conductivity of nanofluid to that of the base fluid increased with an increase in temperature and volumetric concentration. As an example, as much as a 20% enhancement in thermal conductivity was evidenced for a particle volumetric concentration of 10% at 87 °C. Comparison of experimental results of this nonmetallic nanoparticles suspension with the well-known model developed by Hamilton and Crosser for microparticles suspensions, exhibits that this model underpredicts the thermal conductivity of nanofluids. Therefore, a new correlation has been derived following recent models developed for metallic nanoparticles suspensions, which is a combination of the Hamilton–Crosser model plus a term due to the Brownian motion. This new correlation expresses the thermal conductivity of silicon dioxide nanofluid as a function of temperature, volumetric concentration and the properties of the base fluid and the nanoparticles.

References

References
1.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
.10.1063/1.1341218
2.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Trans.
,
121
(2), pp.
280
289
.10.1115/1.2825978
3.
Das
,
S.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Trans.
,
125
(4), pp.
567
574
.10.1115/1.1571080
4.
Yu
,
W.
, and
Choi
,
S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
, pp.
167
171
.10.1023/A:1024438603801
5.
Maxwell
,
J. C.
,
1904
,
A Treatise on Electricity and Magnetism
,
2nd ed.
,
Oxford University
,
Cambridge, UK
.
6.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
, pp.
577
588
.10.1007/s11051-004-3170-5
7.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2005
, “
Laminar Nanofluid Flow in Micro Heat-Sinks
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2652
2661
.10.1016/j.ijheatmasstransfer.2005.01.029
8.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2005
, “
Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids
,”
Int. J. Thermal Sci.
,
44
, pp.
367
373
.10.1016/j.ijthermalsci.2004.12.005
9.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component System
,”
IEIEC Trans. Fundamentals
,
1
, pp.
187
191
.10.1021/i160003a005
10.
Bruggemen
,
D. A. G.
,
1935
, “
Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen
,”
Ann. Phys.
,
24
, pp.
636
679
.10.1002/andp.19354160705
11.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2006
, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Trans.
,
128
(6), pp.
588
595
.10.1115/1.2188509
12.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2007
, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Trans.
,
129
(5), pp.
617
623
.10.1115/1.2712475
13.
Li
,
C. H.
,
Williams
,
W.
,
Buongiorno
,
J.
,
Hu
,
L. W.
, and
Peterson
,
G. P.
,
2008
, “
Transient and Steady-State Experimental Comparison Study of Effective Thermal Conductivity of Al2O3/Water Nanofluids
,”
ASME J. Heat Trans.
,
130
(4), p.
042407
.10.1115/1.2789719
14.
Wang
,
X. Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
, pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
15.
Xue
,
Q.
, and
Xu
,
W.
,
2005
, “
A Model of Thermal Conductivity of Nanofluids With Interfacial Shells
,”
Chem. Phys.
,
90
, pp.
298
301
.
16.
Xuan
,
Y.
,
Li
,
Q.
, and
Hu
,
W.
,
2003
, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
,
49
(
4
), pp.
1038
1043
.10.1002/aic.690490420
17.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
(
15
), p.
153107
.10.1063/1.2093936
18.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Measurement of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4675
4682
.10.1016/j.ijheatmasstransfer.2009.06.027
19.
Alfa Aesar
,
2007
, “Nanoparticles and Dispersions,” http://www.alfaaesar.com
20.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Introduction to Heat Transfer
,
3rd ed.
,
Wiley
,
New York
.
21.
Bolz
,
R.
, and
Tuve
,
G.
,
2007
,
Handbook of Tables for Applied Engineering Science
,
2nd ed.
,
CRC Press
, Boca Raton, FL.
22.
Feng
,
Y.
, and
Kleinstreuer
,
C.
,
2010
, “
Nanofluid Convective Heat Transfer in a Parallel-Disk System
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4619
4628
.10.1016/j.ijheatmasstransfer.2010.06.031
23.
P.A. Hilton Ltd.
,
2005
, “
Experimental Operating and Maintenance Procedures for Thermal Conductivity of Liquids and Gases Unit
,” Hampshire, England.
24.
Bejan
,
A.
,
1993
,
Heat Transfer
,
Wiley
,
New York
.
25.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1999
,
Experimentation and Uncertainty Analysis for Engineers
,
2nd ed.
,
Wiley
,
New York
.
26.
Omega Engineering Inc.
,
2005
, “
The Data Acquisition Systems Handbook
,” Stamford, CT.
27.
Owen
,
M. S.
, ed.,
2005
,
ASHRAE Handbook Fundamentals
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc.
,
Atlanta, GA
.
28.
Branson Ultrasonic Corporation
,
2010
, “
Bransonic Tabletop Ultrasonic Cleaners
,” Danbury, CT.
You do not currently have access to this content.