Steadily increasing heat dissipation in electronic devices has generated renewed interest in direct immersion cooling. The ideal heat transfer fluid for direct immersion cooling applications should be chemically and thermally stable, and compatible with the electronic components. These constraints have led to the use of Novec fluids and fluroinerts as coolants. Although these fluids are chemically stable and have low dielectric constants, they are plagued by poor thermal properties like low thermal conductivity (about twice that of air) and low specific heat (same as that of air). These factors necessitate the development of new heat transfer fluids with improved heat transfer properties and applicability. C4H4F6O is a new heat transfer fluid which has been identified using computer-aided molecular design (CAMD) and knowledge-based approaches. A mixture of Novec fluid (HFE 7200) with C4H4F6O is evaluated in this study. Pool boiling experiments are performed at saturated condition on a 10 mm × 10 mm silicon test chip with CuO nanostructures on a microgrooved surface, to investigate the thermal performance of this new fluid mixture. The mixture increased the critical heat flux moderately by 8.4% over pure HFE 7200. Additional investigation is necessary before C4H4F6O can be considered for immersion cooling applications.

References

References
1.
Incropera
,
F. P.
,
1999
,
Liquid Cooling of Electronic Devices by Single-Phase Convection
,
John Wiley & Sons
,
New York
.
2.
Tummala
,
R. R.
, and
Swaminathan
,
M.
,
2008
,
Introduction to System-on-Package (SOP): Miniaturization of the Entire System
,
McGraw-Hill
,
New York
.
3.
Poniewski
,
M. E.
, and
Thome
,
J. R.
,
2008
,
Nucleate Boiling on Micro-Structured Surfaces
,
Heat Transfer Research, Inc.
,
College Station, TX
.
4.
Mohapatra
,
S. C.
,
2006
, “
An Overview of Liquid Coolants for Electronics Cooling
,”
Electron. Cooling
,
12
(
5
), pp.
1
6
.
5.
Arik
,
M.
, and
Bar-Cohen
,
A.
,
2002
, “
Ebullient Cooling of Integrated Circuits by Novec Fluids
,” GE Global Research, Technical Report No. GRC027.
6.
Harper
,
P. M.
,
Gani
,
R.
,
Kolar
,
P.
, and
Ishikawa
,
T.
,
1999
, “
Computer-Aided Molecular Design With Combined Molecular Modeling and Group Contribution
,”
Fluid Phase Equilib.
,
158–160
, pp.
337
347
.10.1016/S0378-3812(99)00089-8
7.
Rafiqul
,
G.
,
2004
, “
Chemical Product Design: Challenges and Opportunities
,”
Comput, Chem. Eng.
,
28
(
12
), pp.
2441
2457
.10.1016/j.compchemeng.2004.08.010
8.
Gani
,
R.
,
Jiménez-González
,
C.
, and
Constable
,
D. J. C.
,
2005
, “
Method for Selection of Solvents for Promotion of Organic Reactions
,”
Comput, Chem. Eng.
,
29
(
7
), pp.
1661
1676
.10.1016/j.compchemeng.2005.02.021
9.
Marcoulaki
,
E. C.
, and
Kokossis
,
A. C.
,
2000
, “
On the Development of Novel Chemicals Using a Systematic Synthesis Approach. Part I. Optimisation Framework
,”
Chem. Eng. Sci.
,
55
(
13
), pp.
2529
2546
.10.1016/S0009-2509(99)00522-9
10.
Odele
,
O.
, and
Macchietto
,
S.
,
1993
, “
Computer Aided Molecular Design: A Novel Method for Optimal Solvent Selection
,”
Fluid Phase Equilib.
,
82
, pp.
47
54
.10.1016/0378-3812(93)87127-M
11.
Duvedi
,
A.
, and
Achenie
,
L. E. K.
,
1997
, “
On the Design of Environmentally Benign Refrigerant Mixtures: A Mathematical Programming Approach
,”
Comput, Chem. Eng.
,
21
(
8
), pp.
915
923
.10.1016/S0098-1354(96)00310-9
12.
Warrier
,
P.
,
Sathyanarayana
,
A.
,
Patil
,
D. V.
,
France
,
S.
,
Joshi
,
Y.
, and
Teja
,
A. S.
,
2012
, “
Novel Heat Transfer Fluids for Direct Immersion Phase Change Cooling of Electronic Systems
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3379
3385
.10.1016/j.ijheatmasstransfer.2012.02.063
13.
Im
,
Y.
,
2010
, “
Copper Nanowire and Flower-Like CuO Nanostructure Surfaces for Enhanced Boiling
,” Ph.D. thesis, Korea Advanced Institute of Science and Technology, Republic of Korea.
14.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
15.
Marsh
,
K. N.
, ed.,
1987
,
Recommended Reference Materials for the Realization of Physicochemical Properties
,
Blackwell Scientific Publications
,
Oxford, UK
.
16.
Bleazard
,
J. G.
, and
Teja
,
A. S.
,
1995
, “
Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-Wire Method
,”
J. Chem. Eng. Data
,
40
(
4
), pp.
732
737
.10.1021/je00020a003
17.
Prausnitz
,
J. M.
,
de Azevedo
,
E. G.
, and
Lichtenthaler
,
R. N.
,
1999
,
Molecular Thermodynamics of Fluid-Phase Equilibria
,
Prentice-Hall PTR
,
Upper Saddle River, NJ
.
18.
Griffith
,
P.
, and
Wallis
,
J. D.
,
1958
,
The Role of Surface Conditions in Nucleate Boiling
,
Division of Industrial Cooperation, Massachusetts Institute of Technology
,
Cambridge, MA
.
19.
Bar-Cohen
,
A.
, and
McNeil
,
A.
,
1992
, “
Parametric Effects of Pool Boiling Critical Heat Flux in Dielectric Liquids
,” ASME, Santa Barbara, CA, pp.
171
175
.
20.
Ahmed
,
S.
, and
Carey
,
V. P.
,
1998
, “
Effects of Gravity on the Boiling of Binary Fluid Mixtures
,”
Int. J. Heat Mass Transfer
,
41
(
16
), pp.
2469
2483
.10.1016/S0017-9310(97)00334-7
21.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” Ph.D. thesis, University of California, Los Angeles, CA.
22.
Lienhard
,
J. H.
,
Dhir
,
V. K.
, and
Riherd
,
D. M.
,
1973
, “
Peak Pool Boiling Heat-Flux Measurements on Finite Horizontal Flat Plates
,”
ASME J. Heat Transfer
,
95
(
4
), pp.
477
482
.10.1115/1.3450092
You do not currently have access to this content.