High density polyethylene (HDPE) is widely used as a bearing material in industrial application because of its low friction and high wear resistance properties. Carbon nanofiber (CNF) reinforced HDPE nanocomposites are promising materials for biomedical applications as well, such as being the bearing materials in total joint replacements. The main objective of the present study is to investigate how the wear of HDPE can be altered by the addition of either pristine or silane treated CNFs at different loading levels (0.5 wt. % and 3 wt. %). Two types of silane coating thicknesses, 2.8 nm and 46 nm, were applied on the surfaces of oxidized CNFs to improve the interfacial bonding strength between the CNFs and the matrix. The CNF/HDPE nanocomposites were prepared through melt mixing and hot-pressing. The coefficients of friction (COFs) and wear rates of the neat HDPE and CNF/HDPE nanocomposites were determined using a pin-on-disc tribometer under dry sliding conditions. The microstructures of the worn surfaces of the nanocomposites were characterized using both scanning electron microscope (SEM) and optical microscope to analyze their wear mechanisms. Compared with the neat HDPE, the COF of the nanocomposites were reduced. The nanocomposite reinforced with CNFs coated with the thicker silane coating (46 nm) at 0.5 wt. % loading level was found to yield the highest wear resistance with a wear rate reduction of nearly 68% compared to the neat HDPE.

References

References
1.
Zoo
,
Y.
,
An
,
J.
,
Lim
,
D.
, and
Lim
,
D.
,
2004
, “
Effect of Carbon Nanotube Addition on Tribological Behavior of UHMWPE
,”
Tribol. Lett.
,
16
, pp.
305
309
.10.1023/B:TRIL.0000015206.21688.87
2.
Suh
,
N. P.
,
Mosleh
,
M.
, and
Arinez
,
J.
,
1998
, “
Tribology of Polyethylene Homocomposites
,”
Wear
,
214
, pp.
231
-
236
.10.1016/S0043-1648(97)00233-0
3.
Anderson
,
J. C.
,
1982
, “
High Density and Ultra-High Molecular Weight Polyethenes: Their Wear Properties and Bearing Applications
,”
Tribol. Int.
,
15
, pp.
43
47
.10.1016/0301-679X(82)90111-6
4.
Sahebian
,
S.
,
Zebarjad
,
S. M.
,
Sajjadi
,
S. A.
,
Sherafat
,
Z.
, and
Lazzeri
,
A.
,
2007
, “
Effect of Both Uncoated and Coated Calcium Carbonate on Fracture Toughness of HDPE/CaCO3 Nanocomposites
,”
J. Appl. Polym. Sci.
,
104
, pp.
3688
3694
.10.1002/app.25644
5.
Guermazi
,
N.
,
Elleuch
,
K.
,
Ayedi
,
H. F.
,
Fridrici
,
V.
, and
Kapsa
,
P.
,
2009
, “
Tribological Behaviour of Pipe Coating in Dry Sliding Contact With Steel
,”
Mater. Des.
,
30
, pp.
3094
3104
.10.1016/j.matdes.2008.12.003
6.
Mourad
A.-H. I.
,
Fouad
,
H.
, and
Elleithy
,
R.
,
2009
, “
Impact of Some Environmental Conditions on the Tensile, Creep-Recovery, Relaxation, Melting and Crystallinity Behaviour of UHMWPE-GUR 410-Medical Grade
,”
Mater. Des.
,
30
, pp.
4112
4119
.10.1016/j.matdes.2009.05.001
7.
Charnley
,
J.
,
1960
, “
Anchorage of the Femoral Head Prosthesis to the Shaft of the Femur
,”
J. Bone Joint Surg. Br.
,
42
, pp.
28
30
.
8.
Unsworth
,
A.
,
1995
, “
Recent Developments in the Tribology of Artificial Joints
,”
Tribol. Int.
,
28
, pp.
485
495
.10.1016/0301-679X(95)00027-2
9.
Fouad
,
H.
, and
Elleithy
,
R.
,
2011
, “
High Density Polyethylene/Graphite Nano-Composites for Total Hip Joint Replacements: Processing and In Vitro Characterization
,”
J. Mech. Behav. Biomed. Mater.
,
4
, pp.
1376
1383
.10.1016/j.jmbbm.2011.05.008
10.
Chowdhury
,
S.
,
Mishra
,
A.
,
Pradhan
,
B.
, and
Saha
,
D.
,
2004
, “
Wear Characteristic and Biocompatibility of Some Polymer Composite Acetabular Cups
,”
Wear
,
256
, pp.
1026
1036
.10.1016/S0043-1648(03)00535-0
11.
Willert
,
H.
, and
Buchorn
,
G.
,
1991
,
Ultra-High Molecular Weight Polyethylene as Biomaterial in Orthopaedic Surgery
,
P.
Eyerer
, ed.,
Hogrefe and Huber Publishers
,
Toronto, Canada
.
12.
Barbour
,
P.
,
Stone
,
M.
, and
Fisher
,
J.
,
1999
, “
A Study of the Wear Resistance of Three Types of Clinically Applied UHMWPE for Total Replacement Hip Prostheses
,”
Biomaterials
,
20
, pp.
2101
2106
.10.1016/S0142-9612(99)00096-4
13.
Kim
,
S.
,
2008
, “
Changes in Surgical Loads and Economic Burden of Hip and Knee Replacements in the US: 1997–2004
,”
Arthritis Rheum.
,
59
, pp.
481
488
.10.1002/art.23525
14.
Westby
,
M. D.
, and
Backman
,
C. L.
,
2010
, “
Patient and Health Professional Views on Rehabilitation Practices and Outcomes Following Total Hip and Knee Arthroplasty for Osteoarthritis: A Focus Group Study
,”
Health Serv. Res.
,
10
, p.
119
.10.1186/1472-6963-10-119
15.
Ingham
,
E.
, and
Fisher
,
J.
,
2000
, “
Biological Reactions to Wear Debris in Total Joint Replacement
,”
Proc. Inst. Mech. Eng.
,
214
, pp.
21
36
.10.1243/0954411001535219
16.
Sochart
,
D.
,
1999
, “
Relationship of Acetabular Wear to Osteolysis and Loosening in Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
363
, pp.
135
150
.10.1097/00003086-199906000-00018
17.
Vermes
,
C.
,
Roebuck
,
K.
,
Chandrasekaran
,
R.
,
Dobai
,
J.
,
Jacobs
,
J.
, and
Glant
,
T.
,
2000
, “
Particulate Wear Debris Activates Protein Tyrosine Kinases and Nuclear Factor Kappa BETA, Which Down-Regulates Type I Collagen Synthesis in Human Osteoblasts
,”
J. Bone Miner. Res.
,
15
, pp.
1756
1765
.10.1359/jbmr.2000.15.9.1756
18.
Charlesby
,
A.
,
1952
, “
Cross-Linking of Polythene by Pile Radiation
,”
Proc. R. Soc. London, Ser. A
,
215
, pp.
187
214
.10.1098/rspa.1952.0206
19.
Deboer
,
J.
, and
Pennings
,
A.
,
1982
, “
Crosslinking of Ultra-High Molecular Weight Polyethylene in the Melt by Means of 2,5-dimethyl-2,5-bis(tert-butyldioxy)-3-hexyne: 2. Crystallization Behaviour and Mechanical Properties
,”
Polymer
,
23
, pp.
1944
1952
.10.1016/0032-3861(82)90222-1
20.
Atkinson
,
J.
, and
Cicek
,
R.
,
1984
, “
Silane Crosslinked Polyethylene for Prosthetic Applications. II. Creep and Wear Behavior and a Preliminary Molding Test
,”
Biomaterials
,
5
, pp.
326
335
.10.1016/0142-9612(84)90030-9
21.
Xiong
,
D.
,
2005
, “
Friction and Wear Properties of UHMWPE Composites Reinforced With Carbon Fiber
,”
Mater. Lett.
,
59
, pp.
175
179
.10.1016/j.matlet.2004.09.011
22.
Cao
,
S.
,
Liu
,
H.
,
Ge
,
S.
, and
Wu
,
G.
,
2011
, “
Mechanical and Tribological Behaviors of UHMWPE Composites Filled With Basalt Fibers
,”
J. Reinf. Plast. Compos.
,
30
, pp.
347
355
.10.1177/0731684410394698
23.
Tong
,
J.
,
Ma
,
Y.
, and
Jiang
,
M.
,
2003
, “
Effects of the Wollastonite Fiber Modification on the Sliding Wear Behavior of the UHMWPE Composites
,”
Wear
,
255
, pp.
734
741
.10.1016/S0043-1648(03)00221-7
24.
Johnson
,
B.
,
Santare
,
M.
,
Novotny
,
J.
, and
Advani
,
S.
,
2009
, “
Wear Behavior of Carbon Nanotube/High Density Polyethylene Composites
,”
Mech. Mater.
,
41
(
10
), pp.
1108
1115
.10.1016/j.mechmat.2009.04.003
25.
Galetz
,
M.
,
Blass
,
T.
,
Ruckdaschel
,
H.
,
Sandler
,
J.
,
Altstadt
,
V.
, and
Glatzel
,
U.
,
2007
, “
Carbon Nanofibre-Reinforced Ultrahigh Molecular Weight Polyethylene for Tribological Applications
,”
J. Appl. Polym. Sci.
,
104
(
6
), pp.
4173
4181
.10.1002/app.26058
26.
Wright
,
T.
,
Astion
,
D.
,
Bansal
,
M.
,
Rimnac
,
C.
,
Green
,
T.
,
Insall
,
J.
, and
Robinson
,
R.
,
1988
, “
Failure of Carbon Fiber-Reinforced Polyethylene Total Knee-Replacement Components. A Report of Two Cases
,”
J. Bone Joint Surg. Am.
,
70
, pp.
926
932
.
27.
Sui
,
G.
,
Zhong
,
W.
,
Ren
,
X.
,
Wang
,
X.
, and
Yang
,
X.
,
2009
, “
Structure, Mechanical Properties and Friction Behavior of UHMWPE/HDPE/Carbon Nanofibers
,”
Mater. Chem. Phys.
,
115
, pp.
404
412
.10.1016/j.matchemphys.2008.12.016
28.
Tan
,
E.
, and
Lim
,
C.
,
2006
, “
Mechanical Characterization of Nanofibers—A Review
,”
Compos. Sci. Technol.
,
66
, pp.
1102
1111
.10.1016/j.compscitech.2005.10.003
29.
Elias
,
K.
,
Price
,
R.
, and
Webster
,
T.
,
2002
, “
Enhanced Functions of Osteoblasts on Nanometer Diameter Carbon Fibers
,”
Biomaterials
,
23
, pp.
3279
3287
.10.1016/S0142-9612(02)00087-X
30.
Price
,
R.
,
Waid
,
M.
,
Haberstroh
,
K.
, and
Webster
,
T.
,
2003
, “
Selective Bone Cell Adhesion on Formulations Containing Carbon Nanofibers
,”
Biomaterials
,
24
, pp.
1877
1887
.10.1016/S0142-9612(02)00609-9
31.
Webster
,
T.
,
Waid
,
M.
,
McKenzie
,
J.
,
Price
,
R.
, and
Ejiofor
,
J.
,
2004
, “
Nano-Biotechnology: Carbon Nanofibres as Improved Neural and Orthopaedic Implants
,”
Nanotechnology
,
15
, pp.
48
54
.10.1088/0957-4484/15/1/009
32.
Smart
,
S.
,
Cassady
,
A.
,
Lu
,
G.
, and
Martin
,
D.
,
2006
, “
The Biocompatibility of Carbon Nanotubes
,”
Carbon
,
44
, pp.
1034
1047
.10.1016/j.carbon.2005.10.011
33.
McKenzie
,
J.
,
Waid
,
M.
,
Shi
,
R.
, and
Webster
,
T.
,
2004
, “
Decreased Functions of Astrocytes on Carbon Nanofiber Materials
,”
Biomaterials
,
25
, pp.
1309
1317
.10.1016/j.biomaterials.2003.08.006
34.
Wood
,
W.
,
Kumar
,
S.
, and
Zhong
,
W. H.
,
2010
, “
Synthesis of Organosilane-Modified Carbon Nanofibers and Influence of Silane Coating Thickness on the Performance of Polyethylene Nanocomposites
,”
Macromol. Mater. Eng.
,
295
, pp.
1125
1135
.10.1002/mame.201000226
35.
Liu
,
T.
,
Wood
,
W.
, and
Zhong
,
W. H.
,
2011
, “
Sensitivity of Dielectric Properties to Wear Process on Carbon Nanofiber/High-Density Polyethylene Composites
,”
Nanoscale Res. Lett.
,
6
, p.
7
. 10.1007/s11671-010-9748-1
36.
Colaco
,
R.
,
Gispert
,
M.
,
Serro
,
A.
, and
Saramago
,
B.
,
2007
, “
An Energy-Based Model for the Wear of UHMWPE
,”
Tribol. Lett.
,
26
, pp.
119
124
.10.1007/s11249-006-9159-8
37.
Jahangiria
,
M.
,
Hashempourb
,
M.
,
Razavizadehb
,
H.
, and
Rezaieb
,
H. R.
,
2012
, “
Application and Conceptual Explanation of an Energy-Based Approach for the Modeling and Prediction of Sliding Wear
,”
Wear
,
274-275
, pp.
168
174
.10.1016/j.wear.2011.08.025
38.
Huq
,
M.
, and
Celis
,
J.
,
2002
, “
Expressing Wear Rate in Sliding Contacts Based on Dissipated Energy
,”
Wear
,
252
, pp.
375
383
.10.1016/S0043-1648(01)00867-5
39.
Fouvry
,
S.
,
Liskiewicz
,
T.
,
Kapsa
,
P.
,
Hannel
,
S.
, and
Sauger
,
E.
,
2003
, “
An Energy Description of Wear Mechanisms and Its Applications to Oscillating Sliding Contacts
,”
Wear
,
255
, pp.
287
298
.10.1016/S0043-1648(03)00117-0
40.
Liskiewicz
,
T.
, and
Fouvry
,
S.
,
2005
, “
Development of a Friction Energy Capacity Approach to Predict the Surface Coating Endurance Under Complex Oscillating Sliding Conditions
,”
Tribology Int.
,
38
, pp.
69
79
.10.1016/j.triboint.2004.06.002
41.
Ramalho
,
A.
, and
Miranda
,
J.
,
2006
, “
The Relationship Between Wear and Dissipated Energy in Sliding Systems
,”
Wear
,
260
, pp.
361
367
.10.1016/j.wear.2005.02.121
42.
Dowson
,
D.
, and
Harding
,
R.
,
1982
, “
The Wear Characteristics of Ultrahigh Molecular-Weight Polyethylene Against a High-Density Alumina Ceramic Under Wet (Distilled Wear) and Dry Conditions
,”
Wear
,
75
, pp.
313
331
.10.1016/0043-1648(82)90156-9
43.
Allen
,
C.
,
Bloyce
,
A.
, and
Bell
,
T.
,
1996
, “
Sliding Wear Behaviour of Ion Implanted Ultra High Molecular Weight Polyethylene Against a Surface Modified Titanium Alloy Ti-6Al-4V
,”
Tribology Int.
,
29
, pp.
527
534
.10.1016/0301-679X(95)00116-L
44.
Ganesh
,
B. K. C.
,
Ramaniah
,
N.
, and
Chandrasekhar Rao
,
P. V.
,
2012
, “
Effect of Heat Treatment on Dry Sliding Wear of Titanium-Aluminum-Vanadium (Ti-6Al-4V) Implant Alloy
,”
J. Mech. Eng. Res.
,
4
, pp.
67
74
.10.5897/JMER11.090
45.
Lavrakas
,
V.
,
1957
, “
Textbook Errors: Guest Column. XII: The Lubricating Properties of Graphite
,”
J. Chem. Educ.
,
34
, p.
240
.10.1021/ed034p240
46.
Ho
,
S.
,
Carpick
,
R.
,
Boland
,
T.
, and
Laberge
,
M.
,
2002
, “
Nanotribology of CoCr-UHMWPE TJR Prosthesis Using Atomic Force Microscopy
,”
Wear
,
253
, pp.
1145
1155
.10.1016/S0043-1648(02)00220-X
47.
Jahangiri
,
M.
,
Hashempour
,
M.
,
Razavizadeh
,
H.
, and
Rezaie
,
H. R.
,
2012
, “
A New Method to Investigate the Sliding Wear Behaviour of Materials Based on Energy Dissipation: W–25 wt.%Cu Composite
,”
Wear
,
274–275
, pp.
175
182
.10.1016/j.wear.2011.08.023
48.
Huq
,
M.
, and
Celis
,
J.
,
1997
, “
Reproducibility of Friction and Wear Results in Ball-on-Disc Unidirectional Sliding Tests of TiN-Alumina Pairings
,”
Wear
,
212
, pp.
151
159
.10.1016/S0043-1648(97)00167-1
49.
Mohrbacher
,
H.
,
Celis
,
J.
, and
Roos
,
J.
,
1995
, “
Laboratory Testing of Displacement and Load-Induced Fretting
,”
Tribology Int.
,
28
, pp.
269
278
.10.1016/0301-679X(95)00005-O
50.
Bhushan
,
B.
,
2001
,
Modern Tribology Handbook
,
CRC Press LLC, Boca Raton, FL
.
51.
Wood
,
W.
,
Maguire
,
R.
, and
Zhong
,
W. H.
,
2011
, “
Improved Wear and Mechanical Properties of UHMWPE-Carbon Nanofiber Composites Through an Optimized Paraffin-Assisted Melt-Mixing Process
,”
Composites Part B
,
42
, pp.
584
591
.10.1016/j.compositesb.2010.09.006
52.
Sahoo
,
N.
,
Rana
,
S.
,
Cho
,
J.
,
Li
,
L.
, and
Chan
,
S.
,
2010
, “
Polymer Nanocomposites Based on Functionalized Carbon Nanotubes
,”
Prog. Polym. Sci.
,
35
, pp.
837
867
.10.1016/j.progpolymsci.2010.03.002
53.
von Recum
,
A. F.
, ed.,
1986
,
Handbook of Biomaterials Evaluation
,
Macmillan
,
Publishing Co., New York
.
54.
Cenna
,
A.
,
Allen
,
S.
,
Page
,
N.
, and
Dastoor
,
P.
,
2003
, “
Modelling the Three-Body Abrasive Wear of UHMWPE Particle Reinforced Composites
,”
Wear
,
254
, pp.
581
588
.10.1016/S0043-1648(03)00067-X
55.
Budinski
,
K.
,
1997
, “
Resistance to Particle Abrasion of Selected Plastics
,”
Wear
,
203
, pp.
302
309
.10.1016/S0043-1648(96)07346-2
56.
Ruan
,
S.
,
Gao
,
P.
,
Yang
,
X.
, and
Yu
,
T.
,
2003
, “
Toughening High Performance Ultrahigh Molecular Weight Polyethylene Using Multiwalled Carbon Nanotubes
,”
Polymer
,
44
, pp.
5643
5654
.10.1016/S0032-3861(03)00628-1
57.
Lozano
,
K.
,
Yang
,
S.
, and
Jones
,
R.
,
2004
, “
Nanofiber Toughened Polyethylene Composites
,”
Carbon
,
42
, pp.
2329
2331
.10.1016/j.carbon.2004.03.021
58.
Ruan
,
S.
,
Gao
,
P.
, and
Yu
,
T.
,
2006
, “
Ultra-Strong Gel-Spun UHMWPE Fibers Reinforced Using Multiwalled Carbon Nanotubes
,”
Polymer
,
47
, pp.
1604
1611
.10.1016/j.polymer.2006.01.020
59.
Chen
,
Y.
, and
Qiao
,
P.
,
2011
, “
Crack Growth Resistance of Hybrid Fiber-Reinforced Cement Matrix Composites
,”
J. Aerosp. Eng.
,
24
, pp.
154
161
.10.1061/(ASCE)AS.1943-5525.0000031
You do not currently have access to this content.