Taylor cones are integral parts in many important applications like electrospinning and electrospray mass spectroscopy. A better understanding of this complex phenomenon of Taylor cone is critical for better control of these processes. As an example, if it is possible to identify and prioritize the roles of fluid characteristics and externally applied electric field, it might be easier to target and control the diameters of nanofibers in an electrospinning process. Under the influence of high electric fields, Taylor cones are formed by a number of liquids including many polymeric solutions. Because of small spatial (microns and below) and temporal (microseconds and below) scales, it is difficult to experimentally study the transient formation of Taylor cones. A number of theoretical analyses have been done under simplifying assumptions like uniform electric field, constant electrohydrodynamic behaviors of the fluid, stationary droplet, etc. Initial Taylor formulation included the introduction of “leaky dielectric” that accumulated charges only on the surface for certain dielectric fluids. Yarin et al. later developed analysis for stationary droplets assuming them to be “perfectly conducting”. To simulate the electrospinning process, the formulation needs the ability to analyze moving boundary conditions, complex fluid properties, three dimensional geometry, and nonlinear coupling between air and liquid, among others. To overcome some of the assumptions of theoretical analyses and as another complementary tool, a computer simulation method was proposed using a commercially available software. In this investigation, much studied aqueous polyethylene oxide (PEO) solution was used to study formation and distortion of Taylor cones. An initial velocity was given to the fluid from the tip of a nozzle and an appropriate electric field was applied to form the Taylor cones. Literature values were used for flow, fluid, and electrical characteristics of the solution. By appropriately manipulating fluid velocities and electric fields, simulations were successful to both replicate the classical cone and distort it to various degrees. These formation and distortion of Taylor cones were similar to reported experimental results. While the numerical and experimental Taylor cones were significantly different in sizes, nondimensional shapes, and sizes of both the results were strikingly similar. Velocities of the fluid in the jet jumped almost 50 times to meters/second as was experimentally observed. Unlike theoretical solutions, the simulation results showed the interaction of the electric fields between the air and advancing fluid tip.

References

References
1.
Taylor
,
G. I.
,
1964
, “
Disintegration of Water Drops in an Electric Field
,”
Proc. R. Soc. London, Ser. A
,
280
, pp.
383
397
.10.1098/rspa.1964.0151
2.
Taylor
,
G. I.
,
1966
, “
The Circulation Produced in a Drop by an Electric Field
,”
Proc. R. Soc. London Ser A.
,
291
, pp.
159
166
.10.1098/rspa.1966.0086
3.
Taylor
,
G. I.
,
1969
, “
Electrically Driven Jets
,”
Proc. R. Soc. London, Ser. A
,
313
, pp.
453
475
.10.1098/rspa.1969.0205
4.
Melcher
,
J. R.
, and
Taylor
,
G. I.
,
1969
, “
Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses
,”
Annual Rev. Fluid Mech.
,
1
, pp.
111
146
.10.1146/annurev.fl.01.010169.000551
5.
Reneker
,
D. H.
, and
Fong
,
H.
,
2006
, “
Polymeric Nanofibers
,” ACS Symposium Series 918, American Chemical Society.
6.
Fenn
,
J. B.
,
Mann
,
M.
,
Meng
,
C. K.
,
Wong
,
S. F.
, and
Whitehouse
,
C. M.
,
2005
, “
Electrospray Ionization-Principles and Practice
,”
Mass Spectrometry Rev.
,
9
, pp.
37
70
.10.1002/mas.1280090103
7.
Gaskell
,
S. J.
,
1997
, “
Electrospray: Principles and Practice
,”
J. Mass Spectrom.
,
32
, pp.
677
688
.10.1002/(SICI)1096-9888(199707)32:7<677::AID-JMS536>3.0.CO;2-G
8.
Saville
,
D. A.
,
1997
, “
Electrohydrodynamics: The Taylor–Melcher Leaky Dielectric Model
,”
Annual Rev. Fluid Mech.
,
29
, pp.
27
64
.10.1146/annurev.fluid.29.1.27
9.
Saville
,
D. A.
,
1970
, “
Electrohydrodynamic Stability: Fluid Cylinders in Longitudinal Electric Fields
,”
Phys. Fluids
,
13
, pp.
2987
2994
.10.1063/1.1692890
10.
Saville
,
D. A.
,
1971
, “
Electrohydrodynamic Stability: Effects of Charge Relaxation on the Interface of a Liquid Jet
,”
J. Fluid Mech.
,
48
, pp.
815
827
.10.1017/S0022112071001873
11.
Hohman
,
M. M.
,
Shin
,
M.
,
Rutledge
,
G. C.
, and
Brenner
,
M. P.
,
2001
, “
Electrospinning and Electrically Forced Liquid Jets: I. Stability Theory
,”
Phys. Fluids
,
13
, pp.
2201
2220
.10.1063/1.1383791
12.
Hohman
,
M. M.
,
Shin
,
M.
,
Rutledge
,
G. C.
, and
Brenner
,
M. P.
,
2001
, “
Electrospinning and Electrically Forced Liquid Jets: II. Applications
,”
Phys. Fluids
,
13
, pp.
2221
2236
.10.1063/1.1384013
13.
Shin
,
M.
,
Hohman
,
M. M.
,
Brenner
,
M. P.
, and
Rutledge
,
G. C.
,
2001
, “
Electrospinning: A Whipping Fluid Jet Generates Submicron Polymer Fibers
,”
Appl. Phys. Lett.
,
78
, pp.
1149
1151
.10.1063/1.1345798
14.
Fridrikh
,
S. V.
,
Yu
,
J. H.
,
Brenner
,
M. P.
, and
Rutledge
,
G. C.
,
2003
, “
Controlling the Fiber Diameter During Electrospinning
,”
Phys. Rev. Lett.
,
90
, p.
144502
.10.1103/PhysRevLett.90.144502
15.
Yarin
,
A. L.
,
Koombhongse
,
S.
, and
Reneker
,
D. H.
,
2001
, “
Taylor Cone and Jetting From Liquid Droplets in Electrospinning of Nanofibers
,”
J. Appl. Phys.
,
90
, pp.
4836
4846
.10.1063/1.1408260
16.
Reznik
,
S. N.
,
Yarin
,
A. L.
,
Theron
,
A.
, and
Zussman
,
E.
,
2004
, “
Transient and Steady Shapes of Droplets Attached to a Surface in a Strong Electric Field
,”
J. Fluid Mech.
,
516
, pp.
349
377
.10.1017/S0022112004000679
17.
Theron
,
S. A.
,
Yarin
,
A. L.
,
Zussman
,
E.
, and
Kroll
,
E.
,
2005
, “
Multiple Jets in Electrospinning: Experiment and Modeling
,”
Polymer
,
46
, pp.
2889
2899
.10.1016/j.polymer.2005.01.054
18.
Zeng
,
J.
, and
Korsmeyer
,
T.
,
2004
, “
Principles of Droplet Electrohydrodynamics for Lab-on-a-Chip
,”
Lab Chip
,
4
, pp.
265
277
.10.1039/b403082f
19.
Sarkar
,
K.
,
Ghalia
,
M. B.
,
Wu
,
Z.
, and
Bose
,
S. C.
,
2009
, “
A Neural Network Model for the Numerical Prediction of the Diameter of Electrospun Polyethylene Oxide Nanofibers
,”
J Mat. Proc. Tech.
,
209
, pp.
3156
3165
.10.1016/j.jmatprotec.2008.07.032
20.
Sarkar
,
K.
,
2009
, “
Application of Dimensional Analysis to Predict Poly Ethylene Oxide (PEO) Fiber Diameters From Electrospinning Process
,”
Int. J. Electrospun Nanofibers Appl.
,
3
, pp.
61
81
.
21.
Sun
,
D.
,
Chang
,
C.
,
Li
,
S.
, and
Lin
,
L.
,
2006
, “
Near-Field Electrospinng
,”
Nano Letters
,
6
, pp.
839
842
.10.1021/nl0602701
22.
Erickson
,
D.
,
2005
, “
Towards Numerical Prototyping of Labs-on-Chip: Modeling for Integrated Microfluidic Devices
,”
Microfluid. Nanofluid.
,
1
, pp.
301
318
.10.1007/s10404-005-0041-z
23.
CoventorWare Analyzer™, www.coventor.com
24.
CoventorWare Analyzer™ Version,
2008
, Microfluidics Reference, Section 5, Bubble-DropSim, pp.
F5-1
F5-45
.
25.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
, pp.
201
225
.10.1016/0021-9991(81)90145-5
26.
Zeng
,
J.
,
Sobek
,
D.
, and
Korsmeyer
,
T.
,
2003
, “
Electro-Hydrodynamic Modeling of Electrospray Ionization: CAD for a μFluidic Device-Mass Spectrometer Interface
,”
12th International Conference on Solid-State Sensors, Actuators and Microsystems, Boston
,
IEEE
, Vol. 2, pp.
1275
1278
.10.1109/SENSOR.2003.1217005
27.
Melcher
,
J. R.
,
1981
,
Continuum Electromechanics
,
MIT Press
,
Cambridge, MA
, Section 3.7.
28.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1960
, “
Electrodynamics of Continuous Media
,”
Addison-Wesley Publishing Company
,
Reading, MA
.
29.
Deitzel
,
J. M.
,
Krauthauser
,
C.
,
Harris
,
D.
,
Pergantis
,
C.
, and
Kleinmeyer
,
J.
,
2006
,
Polymeric Nanofibers (ACS Symposium Series 918)
,
D. H.
Reneker
, and
H.
Fong
, eds., American Chemical Society, Washington, DC, pp.
56
73
.
30.
Hayati
,
I.
,
Bailey
,
A. I.
, and
Tadros
,
T. F.
,
1987
, “
Investigations Into the Mechanisms of Electrohydrodynamic Spraying of Liquids: I. Effect of Electric Field and the Environment on Pendant Drops and Factors Affecting the Formation of Stable Jets and Atomization
,”
J. Colloid Interface Sci.
,
117
, pp.
205
221
.10.1016/0021-9797(87)90185-8
31.
Hayati
,
I.
,
Bailey
,
A. I.
, and
Tadros
,
T. F.
,
1987
, “
Investigations Into the Mechanism of Electrohydrodynamic Spraying of Liquids: II. Mechanism of Stable Jet Formation and Electrical Forces Acting on a Liquid Cone
,”
J. Colloid Interface Sci.
,
117
, pp.
222
230
.10.1016/0021-9797(87)90186-X
32.
Rutledge
,
G. C.
, and
Fridrikh
,
S. V.
,
2007
, “
Formation of Fibers by Electrospinning
,”
Adv. Drug Delivery Rev.
,
59
, pp.
1384
1391
.10.1016/j.addr.2007.04.020
33.
Yu
,
J.
,
2008
, private communication.
You do not currently have access to this content.