The temperature-dependent thermal conductivity and shear viscosity of liquid water between 283 and 363 K are evaluated for eight rigid models with reverse nonequilibrium molecular dynamics (RNEMD). In comparison with experimental data, five-site models (TIP5P and TIP5P-Ew) have apparent advantages in estimating thermal conductivities than other rigid water models that overestimate the value by tens of percent. For shear viscosity, no single model can reproduce all experimental data; instead, five- and four-site models show their own strength in a certain temperature range. Meanwhile, all of the current rigid models obtain lower values than experimental data when temperature is lower than 298 K, while the TIP5P and TIP5P-Ew models can relatively accurately predict the values over others at a temperature range from 298 to 318 K. At a higher temperature range shear viscosity of liquid water can be reproduced with a four-site model (TIP4P-2005, TIP4P-Ew) fairly well.

References

References
1.
Lee
,
H. S.
, and
Tuckerman
,
M. E.
,
2007
, “
Dynamical Properties of Liquid Water From Ab Initio Molecular Dynamics Performed in the Complete Basis Set Limit
,”
J. Chem. Phys.
,
126
, p.
164501
.10.1063/1.2718521
2.
Guillot
,
B.
,
2002
, “
A Reappraisal of What We Have Learnt During Three Decades of Computer Simulations on Water
,”
J. Mol. Liquids
,
101
, pp.
219
260
.10.1016/S0167-7322(02)00094-6
3.
Chaplin
,
M.
,
2012
, “
Water Structure and Science
,” London South Bank University, http://www.lsbu.ac.uk/water/index.html
4.
Abascal
,
J. L. F.
, and
Vega
,
C.
,
2005
, “
A General Purpose Model for the Condensed Phases of Water: TIP4P/2005
,”
J. Chem. Phys.
,
123
, p.
234505
.10.1063/1.2121687
5.
Horn
,
H. W.
,
Swope
,
W. C.
, and
Pitera
,
J. W.
,
2004
, “
Development of an Improved Four-Site Water Model for Biomolecular Simulations: TIP4P-Ew
,”
J. Chem. Phys.
,
120
(
20
), pp.
9665
9678
.10.1063/1.1683075
6.
Rick
,
S. W.
,
2004
, “
A Reoptimization of the Five-Site Water Potential (TIP5P) for Use With Ewald Sums
,”
J. Chem. Phys.
,
120
(
13
), pp.
6085
6093
.10.1063/1.1652434
7.
Chialvo
,
A. A.
,
Houssa
,
M.
, and
Cummings
,
P. T.
,
2002
, “
Molecular Dynamics Study of the Structure and Thermophysical Properties of Model sI Clathrate Hydrates
,”
J. Phys. Chem. B
,
106
(
2
), pp.
442
451
.10.1021/jp012735b
8.
Bertolini
,
D.
,
1997
, “
Thermal Conductivity of Water: Molecular Dynamics and Generalized Hydrodynamics Results
,”
Phys. Rev. E
,
56
(
4
), pp.
4135
4151
.10.1103/PhysRevE.56.4135
9.
Mark
,
P.
, and
Nilsson
L.
,
2001
, “
Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K
,”
J. Phys. Chem. A
,
105
, pp.
9954
9960
.10.1021/jp003020w
10.
González
,
M. A.
, and
Abascal
,
J. L. F.
,
2010
, “
The Shear Viscosity of Rigid Water Models
,”
J. Chem. Phys.
,
132
, p.
096101
.10.1063/1.3330544
11.
Jorgensen
,
W. L.
,
Chandrasekhar
,
J.
, and
Madura
,
J. D.
,
1983
, “
Comparison of Simple Potential Functions for Simulating Liquid Water
,”
J. Chem. Phys.
,
79
, pp.
926
935
.10.1063/1.445869
12.
Mahoney
,
M. W.
,
2000
, “
A Five-Site Model for Liquid Water and the Reproduction of the Density Anomaly by Rigid Nonpolarizable Potential Function
,”
J. Chem. Phys.
,
112
(
20
), pp.
8910
8922
.10.1063/1.481505
13.
Berendsen
,
H. J. C.
,
Grigera
,
J. R.
, and
Straatsma
,
T. P.
,
1987
, “
The Missing Term in Effective Pair Potential
,”
J. Phys. Chem.
,
91
, pp.
6269
6271
.10.1021/j100308a038
14.
Haile
,
J. M.
,
1992
,
Molecular Dynamics Simulation: Elementary Methods
,
1st ed.
,
Wiley
,
Chichester
.
15.
Müller-Plathe
,
F.
,
1997
, “
A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity
,”
J. Chem. Phys.
,
106
, pp.
6082
6085
.10.1063/1.473271
16.
Zhang
,
M.
,
Lussetti
,
E.
,
Souza
,
L. E. S. D.
, and
Müller-Plathe
,
F.
,
2005
, “
Thermal Conductivities of Molecular Liquids by Reverse Nonequilibrium Molecular Dynamics
,”
J. Phys. Chem. B
,
109
, pp.
15060
15067
.10.1021/jp0512255
17.
Bedrov
,
D.
, and
Smith
,
G. D.
,
2000
, “
Thermal Conductivity of Molecular Fluids From Molecular Dynamics Simulations: Application of a New Imposed-Flux Method
,”
J. Chem. Phys.
,
113
(
18
), pp.
8080
8084
.10.1063/1.1312309
18.
Bordat
,
P.
, and
Müller-Plathe
,
F.
,
2002
, “
The Shear Viscosity of Molecular Fluids: A Calculation by Reverse Nonequilibrium Molecular Dynamics
,”
J. Chem. Phys.
,
116
(
18
), pp.
3362
3369
.10.1063/1.1436124
19.
Mao
,
Y.
, and
Zhang
,
Y.
,
2012
, “
Thermal Conductivity, Shear Viscosity and Specific Heat of Rigid Water Models
,”
Chem. Phys. Lett.
,
542
, pp.
37
41
.10.1016/j.cplett. 2012.05.044
20.
Robinson
,
G. W.
,
Zhu
,
S. B.
,
Singh
,
S.
, and
Evans
,
M. W.
,
1996
,
Water in Biology, Chemistry and Physics: Experimental Overviews and Computational Methodologies
,
1st ed.
,
World Scientific
,
Singapore
.
21.
Berendsen
,
H. J. C.
,
Postma
,
J. P. M.
,
van Gunsteren
,
W. F.
, and
Hermans
,
J.
,
1981
,
In Intermolecular Forces
,
1st ed.
,
D.
Reidel
,
Dordrecht
,
The Netherlands
.
22.
Müller-Plathe
,
F.
,
1999
, “
Reversing the Perturbation in Nonequilibrium Molecular Dynamics: An Easy Way to Calculate the Shear Viscosity of Fluids
,”
Phys. Rev. E
,
59
(
5
), pp.
4894
4898
.10.1103/PhysRevE.59.4894
23.
Hockney
,
R. W.
,
1998
,
Computer Simulation Using Particles
,
1st ed.
,
J. W.
Eastwood
, ed.,
Taylor & Francis
,
New York
.
24.
Berendesen
,
H. J. C.
, and
van Gunsteren
,
W. F.
,
1984
,
NATO ASI C
135,
D.
Reidel
,
Dordrecht
,
The Netherlands
.
25.
Ryckaert
,
J. P.
,
Ciccotti
,
G.
, and
Berendsen
,
H. J. C.
,
1997
, “
Numerical Integration of the Cartesian Equation of Motion of a System With Constraints: Molecular Dynamics of n-Alkanes
,”
J. Comput. Phys.
,
23
, pp.
327
341
.10.1016/0021-9991(77)90098-5
26.
Hünenberger
,
P. H.
,
2005
, “
Thermostat Algorithms for Molecular Dynamics Simulations
,”
Adv. Poly. Sci.
,
173
, pp.
105
149
.10.1007/b99427
27.
Plimpton
,
S. J.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
, pp.
1
19
.10.1006/jcph.1995.1039
28.
Haynes
,
W. M.
,
Handbook of Chemistry and Physics
,
91st ed.
,
Taylor & Francis
,
New York
, Chap. 6.
You do not currently have access to this content.