Nanoenergetic materials can provide a significant enhancement in the rate of energy release as compared with microscale materials. The energy-release rate is strongly dependent not only on the primary particle size but also on the level of agglomeration, which is of particular interest for the inclusion of nanoenergetics in practical systems where agglomeration is desired or difficult to avoid. Unlike studies of nanoparticles or nanometer-size aggregates, which can be conducted with ultrafast or nanosecond lasers assuming uniform heating, microscale aggregates of nanoparticles are more sensitive to the thermophysical time scale of the heating process. To allow control over the rate of energy deposition during laser initiation studies, a custom, temporally tailored, continuously variable-pulse-width (VPW) laser was employed for radiative heating of nanoenergetic materials. The laser consisted of a continuous-wave master oscillator, which could be sliced into desired pulses, and a chain of amplifiers to reach high peak power. The slicer allowed control over the time profile of the pulses via the combination of an arbitrary waveform generator and acousto-optic modulator (AOM). The effects of utilizing flat-top or ramped laser pulses with durations from 100 ns to 150 μs and energies up to 20 mJ at 1064 nm were investigated, along with a broad range of heating rates for single particles or nanoparticle aggregates up to 100-μm diameter. In combination with an optical microscope, laser heating of aggregates consisting of 70-nm diameter Al nanoparticles in a Teflon matrix showed significant dependence on the heating profile due to the sensitivity of nanoenergetic materials to heating rate. The ability to control the temporal pulse-intensity profile leads to greater control over the effects of ablative heating and the resulting shockwave propagation. Hence, flexible laser-pulse profiles allow the investigation of energetic properties for a wide size range of metal/metal-oxide nanoparticles, aggregates, and composites.

References

References
1.
Pantoya
,
M. L.
, and
Granier
,
J. J.
,
2005
, “
Combustion Behavior of Highly Energetic Thermites: Nano Versus Micron Composites
,”
Propellants, Explos., Pyrotech.
,
30
(
1
), pp.
53
62
.10.1002/prep.200400085
2.
Armstrong
,
R. W.
,
Baschung
,
B.
,
Booth
,
D. W.
, and
Samirant
,
M.
,
2003
, “
Enhanced Propellant Combustion With Nanoparticles
,”
Nano Lett.
,
3
(
2
), pp.
253
255
.10.1021/nl025905k
3.
Tyagi
,
H.
,
Phelan
,
P. E.
,
Prasher
,
R.
,
Peck
,
R.
,
Lee
,
T.
,
Pacheco
,
J. R.
, and
Arentzen
,
P.
,
2008
, “
Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel
,”
Nano Lett.
,
8
(
5
), pp.
1410
1416
.10.1021/nl080277d
4.
Granier
,
J. J.
,
Plantier
,
K. B.
, and
Pantoya
,
M. L.
,
2004
, “
The Role of the Al2O3 Passivation Shell Surrounding Nano-Al Particles in the Combustion Synthesis of NiAl
,”
J. Mater. Sci.
,
39
, pp.
6421
6431
.10.1023/B:JMSC.0000044879.63364.b3
5.
Granier
,
J. J.
, and
Pantoya
,
M. L.
,
2004
, “
Laser Ignition of Nanocomposite Thermites
,”
Combust. Flame
,
138
(
4
), pp.
373
383
.10.1016/j.combustflame.2004.05.006
6.
Granier
,
J. J.
,
Mullen
,
T.
, and
Pantoya
,
M. L.
,
2003
, “
Nonuniform Laser Ignition in Energetic Materials
,”
Combust. Sci. Technol.
,
175
(
11
), pp.
1929
1951
.10.1080/714923185
7.
Surber
,
E.
,
Lozano
,
A.
,
Lagutchev
,
A.
,
Kim
,
H.
, and
Dlott
,
D. D.
,
2007
, “
Surface Nonlinear Vibrational Spectroscopy of Energetic Materials: HMX
,”
J. Phys. Chem. C
,
111
(
5
), pp.
2235
2241
.10.1021/jp066801r
8.
Sanders
,
V. E.
,
Asay
,
B. W.
,
Foley
,
T. J.
,
Tappan
,
B. C.
,
Pacheco
,
A. N.
, and
Son
,
S. F.
,
2007
, “
Reaction Propagation of Four Nanoscale Energetic Composites (Al/MoO3, Al/WO3, Al/CuO, and Bi2O3)
,”
J. Propul. Power
,
23
, pp.
707
714
.10.2514/1.26089
9.
Conner
,
R. W.
, and
Dlott
,
D. D.
,
2010
, “
Ultrafast Condensed-Phase Emission From Energetic Composites of Teflon and Nanoaluminum
,”
J. Phys. Chem. A
,
114
(
25
), pp.
6731
6741
.10.1021/jp101539u
10.
Zamkov
,
M. A.
,
Conner
,
R. W.
, and
Dlott
,
D. D.
,
2007
, “
Ultrafast Chemistry of Nanoenergetic Materials Studied by Time-Resolved Infrared Spectroscopy: Aluminum Nanoparticles in Teflon
,”
J. Phys. Chem. C
,
111
(
28
), pp.
10278
10284
.10.1021/jp072662h
11.
Dlott
,
D. D.
,
2006
, “
Thinking Big (and Small) About Energetic Materials
,”
Mater. Sci. Technol.
,
22
, pp.
463
473
.10.1179/174328406X83987
12.
Yang
,
Y.
,
Wang
,
S.
,
Sun
,
Z.
, and
Dlott
,
D. D.
,
2004
, “
Propagation of Shock-Induced Chemistry in Nanoenergetic Materials: The First Micrometer
,”
J. Appl. Phys.
,
95
(
7
), pp.
3667
3676
.10.1063/1.1652250
13.
Moore
,
D. S.
,
Son
,
S. F.
, and
Asay
,
B. W.
,
2004
, “
Time-Resolved Spectral Emission of Deflagrating Nano-Al and Nano-MoO3 Metastable Interstitial Composites
,”
Propellants, Explos. Pyrotech.
,
29
(
2
), pp.
106
111
.10.1002/prep.200400038
14.
Yang
,
Y.
,
Sun
,
Z.
,
Wang
,
S.
, and
Dlott
,
D. D.
,
2003
, “
Fast Spectroscopy of Laser-Initiated Nanoenergetic Materials
,”
J. Phys. Chem. B
,
107
(
19
), pp.
4485
4493
.10.1021/jp0269322
15.
Wang
,
S.
,
Yang
,
Y.
,
Sun
,
Z.
, and
Dlott
,
D. D.
,
2003
, “
Fast Spectroscopy of Energy Release in Nanometric Explosives
,”
Chem. Phys. Lett.
, 368(1-2), pp.
189
194
.10.1016/S0009-2614(02)01846-8
16.
Wang
,
S.
,
Yang
,
Y.
,
Yu
,
H.
, and
Dlott
,
D. D.
,
2005
, “
Dynamical Effects of the Oxide Layer in Aluminum Nanoenergetic Materials
,”
Propellants, Explos. Pyrotech.
,
30
(
2
), pp.
148
155
.10.1002/prep.200400097
17.
Efimov
,
O.
,
Juodkazis
,
S.
, and
Misawa
,
H.
,
2004
, “
Intrinsic Single- and Multiple-Pulse Laser-Induced Damage in Silicate Glasses in the Femtosecond-to-Nanosecond Region
,”
Phys. Rev. A
,
69
(
4
), p.
042903
.10.1103/PhysRevA.69.042903
18.
Stuart
,
B. C.
,
Feit
,
M. D.
,
Rubenchik
,
A. M.
,
Shore
,
B. W.
, and
Perry
,
M. D.
,
1995
, “
Laser-Induced Damage in Dielectrics With Nanosecond to Subpicosecond Pulses
,”
Phys. Rev. Lett.
,
74
(
12
), pp.
2248
2251
.10.1103/PhysRevLett.74.2248
19.
Salimbeni
,
R.
,
Pini
,
R.
, and
Siano
,
S.
,
2003
, “
A Variable Pulse Width Nd:Yag Laser for Conservation
,”
J. Cultural Heritage
,
4
(
Supplement 1
), pp.
72
76
.10.1016/S1296-2074(02)01149-4
20.
Garnov
,
S. V.
,
Konov
,
V. I.
,
Kononenko
,
T.
,
Pashinin
,
V. P.
, and
Sinyavsky
,
M. N.
,
2004
, “
Microsecond Laser Material Processing at 1.06 μm
,”
Laser Phys.
,
14
(
6
), pp.
910
915
.
21.
Miller
,
J. D.
,
Slipchenko
,
M. N.
,
Meyer
,
T. R.
,
Jiang
,
N.
,
Lempert
,
W. R.
, and
Gord
,
J. R.
,
2009
, “
Ultrahigh-Frame-Rate OH Fluorescence Imaging in Turbulent Flames Using a Burst-Mode Optical Parametric Oscillator
,”
Opt. Lett.
,
34
(
9
), pp.
1309
1311
.10.1364/OL.34.001309
22.
Yang
,
Y.
,
Wang
,
S.
,
Sun
,
Z.
, and
Dlott
,
D. D.
,
2004
, “
Near-Infrared Laser Ablation of Poly Tetrafluoroethylene (Teflon) Sensitized by Nanoenergetic Materials
,”
Appl. Phys. Lett.
,
85
(
9
), pp.
1493
1495
.10.1063/1.1785291
23.
Dreizin
,
E. L.
,
2009
, “
Metal-Based Reactive Nanomaterials
,”
Prog. Energy Combust. Sci.
,
35
(
2
), pp.
141
167
.10.1016/j.pecs.2008.09.001
24.
Koechner
,
W.
,
2006
,
Solid-State Laser Engineering (Optical Sciences)
,
Springer
,
New York
.
You do not currently have access to this content.