The electrochemical interfacial properties of a well-ordered self-assembled monolayer (SAM) of 1-undecanethiol (UDT) on evaporated gold surface have been investigated by electrochemical impedance spectroscopy (EIS) in electrolytes without a redox couple. Using a constant-phase element (CPE) series resistance model, prolonged incubation times (up to 120 h) show decreasing monolayer capacitance approaching the theoretical value for 1-undecanethiol. Using the CPE exponent α as a measure of ideality, it was found that the monolayer approaches an ideal dielectric (α = 0.992) under prolonged incubation, which is attributed to the reduction of pinholes and defects in the monolayer during coalescence and annealing of SAM chains. The SAMs behave as insulators until a critical potential, Vc, is exceeded in both cathodic and anodic regimes, where electrolyte ions are believed to penetrate the monolayers. Using a Randles circuit model for these cases, the variation of the capacitance and charge transfer resistance with applied dc potential shows decreased permeability to ionic species with prolonged incubation time. The EIS data show that UDT (methylene chain length n = 10), incubated for 120 h, forms a monolayer whose critical voltage range extends from −0.3 to 0.5 V versus Ag/AgCl, previously attained only for alkanethiol at n = 15. At low frequencies where ion diffusion occurs, almost pure capacitive phase (−89 deg) was attained with lengthy incubation.

References

References
1.
Prakash
,
S.
,
Karacor
,
M. B.
, and
Banerjee
,
S.
,
2009
, “
Surface Modification in Microsystems and Nanosystems
,”
Surf. Sci. Rep.
,
64
(
7
), pp.
233
254
.10.1016/j.surfrep.2009.05.001
2.
Gupta
,
C.
,
Shannon
,
M. A.
, and
Kenis
,
P. J. A.
,
2009
, “
Electronic Properties of a Monolayer-Electrolyte Interface Obtained From Mechanistic Impedance Analysis
,”
J. Phys. Chem. C
,
113
(
21
), pp.
9375
9391
.10.1021/jp900918u
3.
Gupta
,
C.
,
Shannon
,
M. A.
, and
Kenis
,
P. J. A.
,
2009
, “
Mechanisms of Charge Transport Through Monolayer-Modified Polycrystalline Gold Electrodes in the Absence of Redox-Active Moieties
,”
J. Phys. Chem. C
,
113
(
11
), pp.
4687
4705
.10.1021/jp8090045
4.
Walczak
,
M. M.
,
Popenoe
,
D. D.
,
Deinhammer
,
R. S.
,
Lamp
,
B. D.
,
Chung
,
C.
, and
Porter
,
M. D.
,
1991
, “
Reductive Desorption of Alkanethiolate Monolayers at Gold: A Measure of Surface Coverage
,”
Langmuir
,
7
(
11
), pp.
2687
2693
.10.1021/la00059a048
5.
Becka
,
A. M.
, and
Miller
,
C. J.
,
1993
, “
Electrochemistry at ω-Hydroxy Thiol Coated Electrodes. 4. Comparison of the Double Layer at ω-Hydroxy Thiol and Alkanethiol Monolayer Coated Au Electrodes
,”
J. Phys. Chem.
,
97
(
23
), pp.
6233
6239
.10.1021/j100125a024
6.
Nahir
,
T. M.
, and
Bowden
,
E. F.
,
1994
, “
Impedance Spectroscopy of Electro-inactive Thiolate Films Adsorbed on Gold
,”
Electrochim. Acta
,
39
(
16
), pp.
2347
2352
.10.1016/0013-4686(94)00209-6
7.
Finklea
,
H. O.
,
1996
,
Electrochemistry of Organized Monolayers of Thiols and Related Molecules on Electrodes
,
Dekker
,
New York
, pp.
109
335
.
8.
Kang
,
M.
, and
Martin
,
C. R.
,
2001
, “
Investigations of Potential-Dependent Fluxes of Ionic Permeates in Gold Nanotubule Membranes Prepared via the Template Method
,”
Langmuir
,
17
, pp.
2753
2759
.10.1021/la001186i
9.
Nguyen
,
B. T.
, and
Toh
,
C.
,
2009
, “
Development of an Electrode-Membrane System for Selective Faradaic Response Towards Charges Redox Species
,”
Electrochim. Acta
,
54
, pp.
5060
5064
.10.1016/j.electacta.2009.01.006
10.
Holtzel
,
A.
, and
Tallarek
,
U.
,
2007
, “
Ionic Conductance of Nanopores in Microscale Analysis Systems: Where Microfluidics Meets Nanofluidics
,”
J. Sep. Sci.
,
30
(
10
), pp.
1398
1419
.10.1002/jssc.200600427
11.
Tian
,
C. S.
, and
Shen
,
Y. R.
,
2009
, “
Structure and Charging of Hydrophobic Material/Water Interfaces Studied by Phase-Sensitive Sum-Frequency Vibrational Spectroscopy
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
36
), pp.
15148
15153
.10.1073/pnas.0901480106
12.
Wu
,
Y.
,
Misra
,
S.
,
Karacor
,
M. B.
,
Prakash
,
S.
, and
Shannon
,
M. A.
,
2010
, “
Dynamic Response of AFM Cantilevers to Dissimilar Functionalized Silica Surfaces in Aqueous Electrolyte Solutions
,”
Langmuir
,
26
(
22
), pp.
16963
16972
.10.1021/la103005c
13.
Davis
,
K. L.
,
Drews
,
B. J.
,
Yue
,
H.
,
Waldeck
,
D. H.
,
Knorr
,
K.
, and
Clark
,
R. A.
,
2008
, “
Electron-Transfer Kinetics of Covalently Atached Cytochrome c/SAM/Au Electrode Assemblies
,”
J. Phys. Chem. C
,
112
, pp.
6571
6576
.10.1021/jp711834t
14.
de Groot
,
M. T.
,
Evers
,
T. H.
,
Merkx
,
M.
, and
Koper
,
M. T. M.
,
2007
, “
Electron Transfer and Ligand Binding to Cytochrome c' Immobolized on Self-Assembled Monolayers
,”
Langmuir
,
23
, pp.
729
736
.10.1021/la062308v
15.
Chen
,
X. J.
,
West
,
A. C.
,
Cropek
,
D. M.
, and
Banta
,
S.
,
2008
, “
Detection of the Superoxide Radical Anion Using Various Alkanethiol Monolayers and Immobolized Cytochrome c
,”
Anal. Chem.
,
80
, pp.
9622
9629
.10.1021/ac800796b
16.
Ge
,
B.
, and
Lisdat
,
F.
,
2001
, “
Superoxide Sensor Based on Cytochrome c Immobolized on Mixed-Thiol SAM With a New Calibration Method
,”
Anal. Chim. Acta
,
454
, pp.
53
64
.10.1016/S0003-2670(01)01545-8
17.
Murgida
,
D. H.
, and
Hilderbrandt
,
P.
,
2005
, “
Redox and Redox-Coupled Processes of Heme Proteins and Enzymes at Electrochemical Interfaces
,”
Phys. Chem.
,
7
, pp.
3773
3784
.10.1039/b507989f
18.
Wilson
,
R. C. K.
,
Phuong
,
D. T.
,
Chainani
,
E.
, and
Scheeline
,
A.
,
2011
, “
Flexible, Micron-Scaled Superoxide Sensor for In Vivo Applications
,”
J. Electroanal. Chem.
,
662
(
1
), pp.
100
104
.10.1016/j.jelechem.2011.03.024
19.
Ryo
,
Y.
,
Hiromi
,
W.
, and
Kohei
,
U.
,
2000
, “
Effect of Temperature on Structure of the Self-Assembled Monolayer on Decanethiol on Au (111) Surface
,”
Langmuir
,
16
, pp.
5523
5525
.10.1021/la991394e
20.
Poerier
,
G. E.
, and
Tarlov
,
M. J.
,
1995
, “
Molecular Ordering and Gold Migration Observed in Butanethiol Self-Assembled Monolayers Using Scanning Tunneling Microscopy
,”
J. Phys. Chem.
,
99
, pp.
10966
10970
.10.1021/j100027a042
21.
Lifshitz
,
I. M.
, and
Slyozov
,
V. V.
,
1961
, “
The Kinetics of Precipitation From Supersaturated Solid Solutions
,”
J. Phys. Chem.
,
19
, pp.
35
50
.
22.
Hoang
,
T. K. N.
,
Deriemaeker
,
L.
,
La
,
V. B.
, and
Finsy
,
R.
,
2004
, “
Monitoring the Simultaneous Ostwald Ripening and Solubilization of Emulsions
,”
Langmuir
,
20
, pp.
8966
8969
.10.1021/la049184b
23.
Douglass
,
E. F.
,
Driscoll
,
P. F.
,
Liu
,
D.
,
Burnham
,
N. A.
,
Lambert
,
C. R.
, and
McGimpsey
,
W. G.
,
2008
, “
Effect of Electrode Roughness on the Capacitive Behavior of Self-Assembled Monolayers
,”
Anal. Chem.
,
80
, pp.
7670
7677
.10.1021/ac800521z
24.
Finklea
,
H. O.
,
Lynch
,
M.
, and
Avery
,
S.
,
1987
, “
Blocking Oriented Monolayers of Alkyl Mercaptans on Gold Electrodes
,”
Langmuir
,
3
, pp.
409
413
.10.1021/la00075a024
25.
Mendes
,
R. K.
,
Freire
,
R. S.
,
Fonseca
,
C. P.
,
Neves
,
S.
, and
Kubota
,
L. T.
,
2004
, “
Characterization of Self-Assembled Thiols Monolayers on Gold Surface by Electrochemical Impedance Spectroscopy
,”
J. Braz. Chem. Soc.
,
15
, pp.
849
855
.10.1590/S0103-50532004000600011
26.
Boubour
,
E.
, and
Lennox
,
R. B.
,
2000
, “
Potential-Induced Defects in n-Alkanethiol Self-Assembled Monolayers Monitored by Impedance Spectroscopy
,”
J. Phys. Chem. B
,
104
(
38
), pp.
9004
9010
.10.1021/jp000151o
27.
Schreiber
,
F.
,
2000
, “
Structure and Growth of Self-Assembling Monolayers
,”
Prog. Surf. Sci.
,
65
, pp.
151
256
.10.1016/S0079-6816(00)00024-1
28.
Love
,
J. C.
,
Estroff
,
L. A.
,
Kriebel
,
J. K.
,
Nuzz
,
R. G.
, and
Whitesides
,
G. M.
,
2005
, “
Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology
,”
Chem. Rev.
,
105
, pp.
1103
1169
.10.1021/cr0300789
29.
Diao
,
P.
,
Guo
,
M.
, and
Tong
,
R.
,
2001
, “
Characterization of Defects in the Formation Process of Self-Assembled Thiol Monolayers by Electrochemical Impedance Spectroscopy
,”
J. Electroanal. Chem.
,
495
, pp.
98
105
.10.1016/S0022-0728(00)00424-1
30.
Boubour
,
E.
, and
Lennox
,
R. B.
,
2000
, “
Insulating Properties of Self-Assembled Monolayers Monitored by Impedance Spectroscopy
,”
Langmuir
,
16
(
9
), pp.
4222
4228
.10.1021/la991328c
31.
Sahalov
,
H.
,
O’Brien
,
B.
,
Stebe
,
K. J.
,
Hristova
,
K.
, and
Searson
,
P. C.
,
2007
, “
Influence of Applied Potential on the Impedance of Alkanethiol SAMs
,”
Langmuir
,
23
, pp.
9681
9685
.10.1021/la701398u
32.
Oesch
,
U.
, and
Janata
,
J.
,
1982
, “
Electrochemical Study of Gold Electrodes With Anodic Oxide Films. Formation and Reduction Behavior of Anodic Oxides on Gold
,”
Electrochim. Acta
,
28
(
9
), pp.
1237
1246
.10.1016/0013-4686(83)85011-7
33.
Hamelin
,
A.
,
Sottomayor
,
J. M.
,
Chang
,
S. C.
, and
Weaver
,
J. M.
,
1990
, “
Cyclic Voltammetric Characterization of Oriented Monocrystalline Gold Surfaces in Aqueous Alkaline Solution
,”
J. Electroanal. Chem.
,
295
, pp.
291
300
.10.1016/0022-0728(90)85023-X
34.
Losic
,
D.
,
Gooding
,
J. J.
,
Shapter
,
J. G.
,
Hibbert
,
D. B.
, and
Short
,
K.
,
2001
, “
The Influence of the Underlying Gold Substrate on Glucose Oxidase Electrodes Fabricated Using Self-Assembled Monolayers
,”
Electroanalysis
,
13
(
17
), pp.
1385
1393
.10.1002/1521-4109(200111)13:17<1385::AID-ELAN1385>3.0.CO;2-L
35.
Bard
,
A. J.
, and
Faulkner
,
L. R.
,
2001
, “
Double-Layer Structure and Adsorption
,”
Electrochemical Methods: Fundamentals and Applications
,
2nd ed.
,
John Wiley & Sons, Inc.
,
New York
.
36.
Vitarelli
,
J. M.
, Jr
.
,
Prakash
,
S.
, and
Talaga
,
S. D.
,
2011
, “
Determining Nanocapillary Geometry From Electrochemical Impedance Spectroscopy Using Variable Topology Network Circuit Model
,”
Anal. Chem.
,
83
, pp.
533
541
.10.1021/ac102236k
37.
Boubour
,
E.
, and
Lennox
,
R. B.
,
2000
, “
Stability of Omega-Functionalized Self-Assembled Monolayers as a Function of Applied Potential
,”
Langmuir
,
16
(
19
), pp.
7464
7470
.10.1021/la000514b
38.
Janek
,
R. P.
, and
Fawcett
,
W. R.
,
1997
, “
Impedance Spectroscopy of Self-Assembled Monolayers on Au(111): Evidence for Complex Double-Layer Structure in Aqueous NaClO4 at the Potential of Zero Charge
,”
J. Phys. Chem. B
,
101
, pp.
8550
8558
.10.1021/jp971698e
39.
Protsailo
,
L. V.
, and
Fawcett
,
W. R.
,
2002
, “
Electrochemical Impedance Spectroscopy at Alkanethiol-Coated Gold in Propylene Carbonate
,”
Langmuir
,
18
, pp.
8933
8941
.10.1021/la0201218
40.
Wang
,
B.
,
Luo
,
J.
,
Wang
,
X.
,
Wang
,
H.
, and
Hou
,
J. G.
,
2004
, “
Dielectric Properties and Frequency Response of Self-Assembled Monolayers of Alkanethiols
,”
Langmuir
,
20
, pp.
5007
5012
.10.1021/la036295m
41.
Campuzano
,
S.
,
Pedrero
,
M.
,
Montemayor
,
C.
,
Fatás
,
E.
, and
Pingarrón
,
J. M.
,
2006
, “
Characterization of Alkanethiol-Self-Assembled Monolayers-Modified Gold Electrodes by Electrochemical Impedance Spectroscopy
,”
J. Electroanal. Chem.
,
586
(
1
), pp.
112
121
.10.1016/j.jelechem.2005.09.007
42.
Darwish
,
N.
,
Eggers
,
P. K.
,
Ciampi
,
S.
,
Zhang
,
Y.
,
Tong
,
Y.
,
Ye
,
S.
,
Paddon-Row
,
M. N.
, and
Gooding
,
J. J.
,
2011
, “
Reversible Potential-Induced Structural Changes of Alkanethiol Monolayers on Gold Surfaces
,”
Electrochem. Commun.
,
13
(
5
), pp.
387
390
.10.1016/j.elecom.2011.01.025
43.
Nyikos
,
L.
, and
Pajkossy
,
T.
,
1985
, “
Fractional Dimension and Fractional Power Frequency-Dependent Impedance of Blocking Electrodes
,”
Electrochim. Acta
,
30
(
11
), pp.
1533
1540
.10.1016/0013-4686(85)80016-5
44.
Liu
,
S. H.
,
1985
, “
Fractal Model for the ac Response of a Rough Interface
,”
Phys. Rev. Lett.
,
55
(
5
), pp.
529
532
.10.1103/PhysRevLett.55.529
45.
Kaplan
,
T.
, and
Gray
,
L. J.
,
1985
, “
Effect of Disorder on a Fractal Model for the ac Response of a Rough Interface
,”
Phys. Rev. B.
,
32
(
11
), pp.
7360
7366
.10.1103/PhysRevB.32.7360
46.
Kaplan
,
T.
, and
Liu
,
S. H.
,
1986
, “
Inverse-Cantor-Bar Model for the ac Response of a Rough Surface
,”
Phys. Rev. B
,
34
(
7
), pp.
4870
4873
.10.1103/PhysRevB.34.4870
47.
Kaplan
,
T.
,
Gray
,
L.
, and
Liu
,
S.
,
1987
, “
Self-Affine Fractal Model for a Metal-Electrolyte Interface
,”
Phys. Rev. B
,
35
(
10
), pp.
5379
5381
.10.1103/PhysRevB.35.5379
48.
Ramirez
,
P.
,
Andreu
,
R.
,
Cuesta
,
A.
,
Calzado
,
C. J.
, and
Calvente
,
J. J.
,
2007
, “
Determination of the Potential of Zero Charge of Au(111) Modified With Thiol Monolayers
,”
Anal. Chem.
,
79
, pp.
6473
6479
.10.1021/ac071341z
49.
Bai
,
L.
, and
Conway
,
B. E.
,
1993
, “
Three-Dimensional Impedance Spectroscopy Diagrans for Processes Involving Electrosorbed Intermediates, Introducing the Third Electrode-Potential Variable-Examination of Conditions Leading to Pseudo-Inductive Behavior
,”
Electrochim. Acta
,
38
, pp.
1803
1815
.10.1016/0013-4686(93)80302-G
50.
Aoki
,
I. V.
,
Bernard
,
M.-C.
,
Cordoba de Torresi
,
S. I.
,
Deslouis de Melo
,
H. G.
,
Joiret
,
S.
, and
Tribollet
,
B.
,
2001
, “
Ac-Impedance and Raman Spectroscopy Study of the Electrochemical Behavior of Pure Aluminum in Citric Acid Media
,”
Electrochim. Acta
,
46
, pp.
1871
1878
.10.1016/S0013-4686(01)00431-5
51.
Dinh
,
H. N.
,
Vanysek
,
P.
, and
Birss
,
V. I.
,
1999
, “
The Effect of Film Thickness and Growth Method on Polyaniline Film Properties
,”
J. Electrochem. Soc.
,
146
(
9
), pp.
3324
3334
.10.1149/1.1392474
52.
Fleig
,
J.
,
Jamnik
,
J.
, and
Maier
,
J.
,
1996
, “
Inductive Loops in Impedance Spectroscopy Caused by Electrical Shielding
,”
J. Electrochem. Soc.
,
143
(
11
), pp.
3636
3641
.10.1149/1.1837263
53.
Ulman
,
A.
,
1996
, “
Formation and Structure of Self-Assembled Monolayers
,”
Chem. Rev.
,
96
, pp.
1533
1554
.10.1021/cr9502357
54.
Rentsch
,
S.
,
Siegenthaler
,
H.
, and
Papastavrou
,
G.
,
2007
, “
Diffuse Layer Properties of Thiol-Modified Gold Electrodes Probed by Direct Force Measurements
,”
Langmuir
,
23
, pp.
9083
9091
.10.1021/la700987u
55.
Iwami
,
Y.
,
Hobara
,
D.
,
Yamamoto
,
M.
, and
Kakiuchi
,
T.
,
2004
, “
Determination of the Potential of Zero Charge of Au(111) Electrodes Modified With Thiol Self-Assembled Monolayers Using a Potential-Controlled Sessile Drop Method
,”
J. Electroanal. Chem.
,
564
, pp.
77
83
.10.1016/j.jelechem.2003.11.028
56.
Chen
,
X. J.
,
West
,
A. C.
,
Cropek
,
D. M.
, and
Banta
,
S.
,
2008
, “
Detection of the Superoxide Radical Anion Using Various Alkanethiol Monolayers and Immobilized Cytochrome c
,”
Anal. Chem.
,
80
, pp.
9622
9629
.10.1021/ac800796b
You do not currently have access to this content.