This paper demonstrates greatly improved specific power (W/g) for encapsulated phase change materials (EPCM) as a result of modified interface morphology. Carbon nanotubes are strongly attached to the interior walls of the graphitic foam encapsulation. Microstructure analysis using scanning electron microscopy (SEM) indicates that the wax infiltrates into the carbon nanotubes (CNT) forest and creates an intimate contact with increased interfacial area between the two phases. Specific power has been calculated by measuring thermal response times of the phase change materials using a custom system. The carbon nanotubes increase the specific power of the encapsulated phase change materials by about 27% during heating and over 146% during the more important stage of latent heat storage. Moreover, SEM images of the interface after repeated thermal cycling indicate that the presence of CNT may also improve durability of the EPCM by preventing interfacial gaps and maintaining improved contact between the graphite and PCM phases.

References

References
1.
Memon
,
M. O.
, and
Lafdi
,
K.
,
2012
, “
Use of Carbon Nanostructures in Transient Spike Power Applications
,”
Int. J. Therm. Sci.
,
53
, pp.
1
7
.10.1016/j.ijthermalsci.2011.11.011
2.
Alrashdan
,
A.
,
Mayyas
,
A. T.
, and
Al-Hallaj
,
S.
,
2010
, “
Thermo-Mechanical Behaviors of the Expanded Graphite-Phase Change Material Matrix Used for Thermal Management of Li-Ion Battery Packs
,”
J. Mater. Process. Technol.
,
210
(
1
), pp.
174
179
.10.1016/j.jmatprotec.2009.07.011
3.
Garimella
,
S. V.
,
Joshi
,
Y. K.
,
Bar-Cohen
,
A.
,
Mahajan
,
R.
,
Toh
,
K. C.
,
Carey
,
V. P.
,
Baelmans
,
M.
,
Lohan
,
J.
,
Sammakia
,
B.
,
Andros
,
F.
,
2002
, “
Thermal Challenges in Next Generation Electronic Systems—Summary of Panel Presentations and Discussions
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
569
575
.10.1109/TCAPT.2003.809113
4.
Park
,
C.
,
Tang
,
X.
,
Kim
,
K. J.
,
Gottschlich
,
J.
, and
Leland
,
Q.
,
2007
, “
Metal Hydride Heat Storage Technology for Directed Energy Weapon Systems
,” ASME International Mechanical Engineering Congress and Exposition, Seattle, WA, Nov. 11–15, pp.
961
969
,
ASME
Paper No. IMECE2007-42831
. 10.1115/IMECE2007-42831
5.
Lorenzen
,
D.
,
Bonhaus
,
J.
,
Fahrner
,
W. R.
,
Kaulfersch
,
E.
,
Worner
,
E.
,
Koidl
,
P.
,
Unger
,
K.
,
Muller
,
D.
,
Rolke
,
S.
,
Schmidt
,
H.
, and
Grellmann
,
M.
,
2001
, “
Micro Thermal Management of High-Power Diode Laser Bars
,”
IEEE Trans. Ind. Electron.
,
48
(
2
), pp.
286
297
.10.1109/41.915407
6.
Schelling
,
P. K.
,
Shi
,
L.
, and
Goodson
,
K. E.
,
2005
, “
Managing Heat for Electronics
,”
Mater. Today
,
8
, pp.
30
35
.10.1016/S1369-7021(05)70935-4
7.
Farid
,
M. M.
,
Khudhair
,
A. M.
,
Razack
,
S. A. K.
, and
Al-Hallaj
,
S.
,
2004
, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1597
1615
.10.1016/j.enconman.2003.09.015
8.
Shukla
,
A.
,
Buddhi
,
D.
, and
Sawhney
,
R. L.
,
2008
, “
Thermal Cycling Test of Few Selected Inorganic and Organic Phase Change Materials
,”
Renewable Energy
,
33
(
12
), pp.
2606
2614
.10.1016/j.renene.2008.02.026
9.
Sarı
,
A.
, and
Karaipekli
,
A.
,
2007
, “
Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1271
1277
.10.1016/j.applthermaleng.2006.11.004
10.
Kousksou
,
T.
,
Jamil
,
A.
,
Rhafiki
,
T. E.
, and
Zeraouli
,
Y.
,
2010
, “
Paraffin Wax Mixtures as Phase Change Materials
,”
Sol. Energy Mater. Sol. Cells
,
94
(
12
), pp.
2158
2165
.10.1016/j.solmat.2010.07.005
11.
He
,
B.
,
Martin
,
V.
, and
Setterwall
,
F.
,
2004
, “
Phase Transition Temperature Ranges and Storage Density of Paraffin Wax Phase Change Materials
,”
Energy
,
29
(
11
), pp.
1785
1804
.10.1016/j.energy.2004.03.002
12.
Shaikh
,
S.
,
Lafdi
,
K.
, and
Hallinan
,
K.
,
2008
, “
Carbon Nanoadditives to Enhance Latent Energy Storage of Phase Change Materials
,”
J. Appl. Phys.
,
103
, p.
094302
.10.1063/1.2903538
13.
Kim
,
S.
, and
Drzal
,
L. T.
,
2009
, “
High Latent Heat Storage and High Thermal Conductive Phase Change Materials Using Exfoliated Graphite Nanoplatelets
,”
Sol. Energy Mater. Sol. Cells
,
93
(
1
), pp.
136
142
.10.1016/j.solmat.2008.09.010
14.
Sarı
,
A.
,
2004
, “
Form-Stable Paraffin/High Density Polyethylene Composites as Solid–Liquid Phase Change Material for Thermal Energy Storage: Preparation and Thermal Properties
,”
Energy Convers. Manage.
,
45
(
13–14
), pp.
2033
2042
.10.1016/j.enconman.2003.10.022
15.
Wang
,
J.
,
Xie
,
H.
, and
Xin
,
Z.
,
2009
, “
Thermal Properties of Paraffin Based Composites Containing Multi-Walled Carbon Nanotubes
,”
Thermochim. Acta
,
488
(
1–2
), pp.
39
42
.10.1016/j.tca.2009.01.022
16.
Mills
,
A.
,
Farid
,
M.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2006
, “
Thermal Conductivity Enhancement of Phase Change Materials Using a Graphite Matrix
,”
Appl. Therm. Eng.
,
26
(
14–15
), pp.
1652
1661
.10.1016/j.applthermaleng.2005.11.022
17.
Lin
,
W.
,
Zhang
,
R.
,
Moon
,
K.-S.
, and
Wong
,
C. P.
,
2010
, “
Molecular Phonon Couplers at Carbon Nanotube/Substrate Interface to Enhance Interfacial Thermal Transport
,”
Carbon
,
48
(
1
), pp.
107
113
.10.1016/j.carbon.2009.08.033
18.
Sihn
,
S.
,
Ganguli
,
S.
,
Roy
,
A. K.
,
Qu
,
L.
, and
Dai
,
L.
,
2008
, “
Enhancement of Through-Thickness Thermal Conductivity in Adhesively Bonded Joints Using Aligned Carbon Nanotubes
,”
Compos. Sci. Technol.
,
68
(
3–4
), pp.
658
665
.10.1016/j.compscitech.2007.09.016
19.
Mukhopadhyay
,
S. M.
,
Mahadev
,
N.
,
Joshi
,
P.
,
Roy
,
A. K.
,
Kearns
,
K. M.
, and
Anderson
,
D. P.
,
2002
, “
Structural Investigation of Graphitic Foam
,”
J. Appl. Phys.
,
91
, pp.
3415
3420
.10.1063/1.1448675
20.
Pulikollu
,
R. V.
, and
Mukhopadhyay
,
S. M.
,
2007
, “
Nanoscale Coatings for Control of Interfacial Bonds and Nanotube Growth
,”
Appl. Surf. Sci.
,
253
, pp.
7342
7352
.10.1016/j.apsusc.2007.03.026
21.
Mukhopadhyay
,
S. M.
,
Joshi
,
P. P.
, and
Pulikollu
,
R. V.
,
2005
, “
Thin Films for Coating Nanomaterials
,”
Tsinghua Sci. Technol.
,
10
, pp.
709
717
.10.1016/S1007-0214(05)70140-1
22.
Mukhopadhyay
,
S. M.
,
Pulikollua
,
R. V.
, and
Roy
,
A. K.
,
2004
, “
Surface Modification of a Microcellular Porous Solid: Carbon Foam
,”
Appl. Surf. Sci.
,
225
, pp.
223
228
.10.1016/j.apsusc.2003.10.015
23.
Pulikollu
,
R. V.
,
2005
, Ph.D. dissertation,
Wright State University
,
Dayton, OH
.
24.
Pulikollu
,
R. V.
,
Higgins
,
S. R.
, and
Mukhopadhyay
,
S. M.
,
2008
, “
Model Nucleation and Growth Studies of Nanoscale Oxide Coatings Suitable for Modification of Microcellular and Nano-Structured Carbon
,”
Surf. Coat. Technol.
,
203
, pp.
65
72
.10.1016/j.surfcoat.2008.07.031
25.
Mukhopadhyay
,
S. M.
,
Karumuri
,
A.
, and
Barney
,
I. T.
,
2009
, “
Hierarchical Nanostructures by Nanotube Grafting on Porous Cellular Surfaces
,”
J. Phys. D
,
42
, p.
195503
.10.1088/0022-3727/42/19/195503
26.
Gojny
,
F. H.
,
Wichmann
,
M. H. G.
,
Fiedler
,
B.
,
Kinloch
,
I. A.
,
Bauhofer
,
W.
,
Windle
,
A. H.
, and
Schulte
,
K.
,
2006
, “
Evaluation and Identification of Electrical and Thermal Conduction Mechanisms in Carbon Nanotube/Epoxy Composites
,”
Polymer
,
47
(
6
), pp.
2036
2045
.10.1016/j.polymer.2006.01.029
You do not currently have access to this content.